Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 50(14): 7801-7815, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35253883

RESUMEN

Centromeres are the chromosomal loci essential for faithful chromosome segregation during cell division. Although centromeres are transcribed and produce non-coding RNAs (cenRNAs) that affect centromere function, we still lack a mechanistic understanding of how centromere transcription is regulated. Here, using a targeted RNA isoform sequencing approach, we identified the transcriptional landscape at and surrounding all centromeres in budding yeast. Overall, cenRNAs are derived from transcription readthrough of pericentromeric regions but rarely span the entire centromere and are a complex mixture of molecules that are heterogeneous in abundance, orientation, and sequence. While most pericentromeres are transcribed throughout the cell cycle, centromere accessibility to the transcription machinery is restricted to S-phase. This temporal restriction is dependent on Cbf1, a centromere-binding transcription factor, that we demonstrate acts locally as a transcriptional roadblock. Cbf1 deletion leads to an accumulation of cenRNAs at all phases of the cell cycle which correlates with increased chromosome mis-segregation that is partially rescued when the roadblock activity is restored. We propose that a Cbf1-mediated transcriptional roadblock protects yeast centromeres from untimely transcription to ensure genomic stability.


Centromeres are essential chromosomal regions that do not encode gene products and instead ensure the accurate partitioning of chromosomes during cell division. Despite the lack of genes, transcription has been detected at centromeres. It has not been clear where this centromeric RNA comes from and how it is regulated. In this study, the authors identified all of the centromeric RNAs at and around budding yeast centromeres during the cell cycle. Unlike RNAs that encode for proteins, centromeric RNAs are a complex mixture of transcripts that result from adjacent RNAs that continue into the centromere. The authors found that most transcription is blocked at the centromere border by a protein called Cbf1. This mechanism shields the centromere from untimely transcription to ensure genome stability.


Asunto(s)
Centrómero , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Prog Mol Subcell Biol ; 60: 169-201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386876

RESUMEN

Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.


Asunto(s)
Centrómero , Cromatina , Centrómero/genética , Proteína A Centromérica/genética , Cinetocoros , Transcripción Genética/genética
3.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34739170

RESUMEN

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Satélite de ARN , Centrómero/genética , Centrómero/metabolismo , ADN Satélite/genética , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Satélite de ARN/genética , Regulación hacia Arriba
4.
Cell Death Dis ; 12(10): 896, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599155

RESUMEN

Centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.


Asunto(s)
Proteína BRCA1/metabolismo , Centrómero/metabolismo , Estructuras R-Loop , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , ADN Satélite/genética , Humanos , Modelos Biológicos , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética/genética
5.
Sci Rep ; 7: 42520, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186195

RESUMEN

Centromeres are chromosomal domains essential for genomic stability. We report here the remarkable transcriptional and epigenetic perturbations at murine centromeres in genotoxic stress conditions. A strong and selective transcriptional activation of centromeric repeats is detected within hours. This is followed by disorganization of centromeres with striking delocalization of nucleosomal CENP-A, the key determinant of centromere identity and function, in a mechanism requiring active transcription of centromeric repeats, the DNA Damage Response (DDR) effector ATM and chromatin remodelers/histone chaperones. In the absence of p53 checkpoint, activated transcription of centromeric repeats and CENP-A delocalization do not occur and cells accumulate micronuclei indicative of genomic instability. In addition, activated transcription and loss of centromeres identity are features of permanently arrested senescent cells with persistent DDR activation. Together, these findings bring out cooperation between DDR effectors and loss of centromere integrity as a safeguard mechanism to prevent genomic instability in context of persistent DNA damage signalling.


Asunto(s)
Senescencia Celular/genética , Proteína A Centromérica/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromatina/metabolismo , Estrés Fisiológico/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Daño del ADN , ADN Satélite , Histonas/metabolismo , Ratones , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Transducción de Señal , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo
6.
Orphanet J Rare Dis ; 9: 56, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24742017

RESUMEN

BACKGROUND: Immunodeficiency Centromeric Instability and Facial anomalies (ICF) is a rare autosomal recessive disease characterized by reduction in serum immunoglobulins with severe recurrent infections, facial dysmorphism, and more variable symptoms including mental retardation. ICF is directly related to a genomic methylation defect that mainly affects juxtacentromeric heterochromatin regions of certain chromosomes, leading to chromosomal rearrangements that constitute a hallmark of this syndrome upon cytogenetic testing. Mutations in the de novo DNA methyltransferase DNMT3B, the protein ZBTB24 of unknown function, or loci that remain to be identified, lie at its origin. Despite unifying features, common or distinguishing molecular signatures are still missing for this disease. METHOD: We used the molecular signature that we identified in a mouse model for ICF1 to establish transcriptional biomarkers to facilitate diagnosis and understanding of etiology of the disease. We assayed the expression and methylation status of a set of genes whose expression is normally restricted to germ cells, directly in whole blood samples and epithelial cells of ICF patients. RESULTS: We report that DNA hypomethylation and expression of MAEL and SYCE1 represent robust biomarkers, easily testable directly from uncultured cells to diagnose the most prevalent sub-type of the syndrome. In addition, we identified the first unifying molecular signatures for ICF patients. Of importance, we validated the use of our biomarkers to diagnose a baby born to a family with a sick child. Finally, our analysis revealed unsuspected complex molecular signatures in two ICF patients suggestive of a novel genetic etiology for the disease. CONCLUSIONS: Early diagnosis of ICF syndrome is crucial since early immunoglobulin supplementation can improve the course of disease. However, ICF is probably underdiagnosed, especially in patients that present with incomplete phenotype or born to families with no affected relatives. The specific and robust biomarkers identified in this study could be introduced into routine clinical immunology or neurology departments to facilitate testing of patients with suspected ICF syndrome. In addition, as exemplified by two patients with a combination of molecular defects never described before, our data support the search for new types of mutations at the origin of ICF syndrome.


Asunto(s)
Metilación de ADN , Perfilación de la Expresión Génica , Células Germinativas , Mutación de Línea Germinal , Síndromes de Inmunodeficiencia/genética , Animales , Proteínas Portadoras/genética , Niño , Preescolar , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Síndromes de Inmunodeficiencia/sangre , Síndromes de Inmunodeficiencia/diagnóstico , Masculino , Ratones , Proteínas Nucleares/genética , Reacción en Cadena de la Polimerasa , Factores de Transcripción
7.
PLoS One ; 5(5): e10504, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20498699

RESUMEN

BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6) times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Insulina/metabolismo , Insulisina/antagonistas & inhibidores , Animales , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/química , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Células HeLa , Humanos , Insulisina/química , Modelos Moleculares , Biblioteca de Péptidos , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA