Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(27): 14802-14810, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37385602

RESUMEN

The lipid-sensing transcription factor PPARγ is the target of antidiabetic thiazolidinediones (TZD). At two sites within its ligand binding domain, it also binds oxidized vitamin E metabolites and the vitamin E mimetic garcinoic acid. While the canonical interaction within the TZD binding site mediates classical PPARγ activation, the effects of the second binding on PPARγ activity remain elusive. Here, we identified an agonist mimicking dual binding of vitamin E metabolites and developed a selective ligand of the second site, unveiling potential noncanonical regulation of PPARγ activities. We found that this alternative binding event can simultaneously occur with orthosteric ligands and it exerted different effects on PPARγ-cofactor interactions compared to both orthosteric PPARγ agonists and antagonists, indicating the diverse roles of the two binding sites. Alternative site binding lacked the pro-adipogenic effect of TZD and mediated no classical PPAR signaling in differential gene expression analysis but markedly diminished FOXO signaling, suggesting potential therapeutic applications.


Asunto(s)
PPAR gamma , Tiazolidinedionas , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Ligandos , Factores de Transcripción/metabolismo , Tiazolidinedionas/química , Sitios de Unión
2.
Bioorg Med Chem ; 27(5): 822-831, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30718063

RESUMEN

To discover new, potent, and selective inhibitors for the murine gamma-aminobutyric acid transporter 4 (mGAT4), the structure-activity relationship (SAR) study of a new cis-alkene analog family based on DDPM-1457 [(S)-2], which previously showed promising inhibitory potency at and subtype selectivity for mGAT4, was conducted. To uncover the importance of the differences between the trans- and the cis-alkene moiety in the spacer, the present publication describes the synthesis of the new compounds via catalytic hydrogenation with Lindlar's catalyst. The biological results collected by the SAR study revealed that analog rac-7j characterized by a four-instead of a three-carbon atom spacer with a cis double bond applying to the majority of the studied compounds displays a surprisingly high potency at mGAT1 (pIC50 = 6.00 ±â€¯0.04) and at the same time a reasonable potency at mGAT4 (pIC50 = 4.82).


Asunto(s)
Alquenos/farmacología , Inhibidores de Recaptación de GABA/farmacología , Ácidos Nipecóticos/farmacología , Alquenos/síntesis química , Alquenos/química , Animales , Diseño de Fármacos , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de Recaptación de GABA/síntesis química , Inhibidores de Recaptación de GABA/química , Células HEK293 , Humanos , Ratones , Ácidos Nipecóticos/síntesis química , Ácidos Nipecóticos/química , Estereoisomerismo , Relación Estructura-Actividad , Tiagabina/farmacología
3.
Bioorg Med Chem ; 27(13): 2753-2763, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31097402

RESUMEN

In the present study, the concept of oxime library screening by MS Binding Assays was successfully extended to N-substituted lipophilic pyrrolidine-3-carboxylic acid derivatives in the pursuit of varying the amino acid motif in order to identify new inhibitors for GAT1 and to broaden structure-activity-relationships for this target, the most abundant GABA transporter in the central nervous system. For the screening, 28 different oxime sub-libraries were employed that were generated by simple condensation reaction of an excess of pyrrolidine-3-carboxylic acid derivatives carrying a hydroxylamine functionality with various sub-libraries each assembled of eight aldehydes with broadly varying chemical structures and functionalities. The compounds responsible for the activity of an oxime sub-library were identified by deconvolution experiments performed by employing single oximes. Binding affinities of the oxime hits were confirmed in full-scale competitive MS Binding Assays. Thereby, oxime derivatives with a 1,1'-biphenyl moiety were found as the first inhibitors of mGAT1 comprising a pyrrolidine-3-carboxylic acid motif with affinities in the submicromolar range.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de Recaptación de GABA/uso terapéutico , Oximas/química , Pirrolidinas/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Inhibidores de Recaptación de GABA/farmacología , Relación Estructura-Actividad
4.
Bioorg Med Chem ; 27(1): 144-152, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30503411

RESUMEN

The γ-aminobutyric acid (GABA) transporter mGAT4 represents a promising drug target for the treatment of epilepsy and other neurological disorders; however, the lack of highly potent and selective inhibitors for mGAT4 still retards its pharmacological elucidation. Herein, the generation and screening of pseudostatic combinatorial hydrazone libraries at the murine GABA transporter mGAT4 for the search of novel GABA uptake inhibitors is described. The hydrazone libraries contained more than 1100 compounds derived from nipecotic acid derivatives substituted at the 5-position instead, as common, at the 1-position of the core structure. Two hits were found and evaluated, which display potencies in the lower micromolar range at mGAT4 and its human equivalent hGAT3. These compounds possess a lipophilic moiety derived from a biphenyl residue attached to the 5-position of the hydrophilic nipecotic acid moiety via a three-atom spacer. Thus, the novel structures with potencies close to that of the bench mark mGAT4 inhibitor (S)-SNAP-5114 add new insights into the structure-activity relationship of mGAT4 inhibitors and could provide a promising starting point for the development of new mGAT4 inhibitors with even higher potencies.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de Recaptación de GABA/farmacología , Hidrazonas/farmacología , Ácidos Nipecóticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Inhibidores de Recaptación de GABA/síntesis química , Inhibidores de Recaptación de GABA/química , Células HEK293 , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Ratones , Estructura Molecular , Ácidos Nipecóticos/síntesis química , Ácidos Nipecóticos/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
5.
Bioorg Med Chem ; 26(22): 5944-5961, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30442505

RESUMEN

Our study presents the synthesis and structure-activity relationship (SAR) of novel N-substituted nipecotic acid derivatives closely related to DDPM-1457 [(S)-2a], a chemically stable analog of (S)-SNAP-5114 (1), in the pursuit of finding new and potent mGAT4 selective inhibitors. Iminium ion chemistry served as key step for the preparation of the desired, new N-substituted nipecotic acid derivatives containing a variety of different heterocycles attached to the nipecotic acid moiety via a trans-alkene spacer. The target compounds were characterized with regard to their potency at and subtype selectivity for the GABA transporters mGAT1-mGAT4.


Asunto(s)
Alquenos/farmacología , Inhibidores de Recaptación de GABA/farmacología , Ácidos Nipecóticos/farmacología , Ácido gamma-Aminobutírico/metabolismo , Alquenos/química , Relación Dosis-Respuesta a Droga , Inhibidores de Recaptación de GABA/síntesis química , Inhibidores de Recaptación de GABA/química , Células HEK293 , Humanos , Estructura Molecular , Ácidos Nipecóticos/síntesis química , Ácidos Nipecóticos/química , Relación Estructura-Actividad
6.
Bioorg Med Chem ; 26(12): 3668-3687, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29886082

RESUMEN

In this study, we present the synthesis and structure-activity relationships (SAR) of novel N-substituted nipecotic acid derivatives closely related to (S)-SNAP-5114 (2) in the pursuit of finding new and potent mGAT4 selective inhibitors. By the use of iminium ion chemistry, a series of new N-substituted nipecotic acid derivatives containing a variety of heterocycles, and an alkyne spacer were synthesized. Biological evaluation of the prepared compounds showed, how the inhibitory potency and subtype selectivity for the murine GABA transporters (mGATs) were influenced by the performed modifications.


Asunto(s)
Alquinos/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de Recaptación de GABA/síntesis química , Ácidos Nipecóticos/química , Animales , Inhibidores de Recaptación de GABA/metabolismo , Células HEK293 , Humanos , Ratones , Ácidos Nipecóticos/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/metabolismo
7.
Biomed Chromatogr ; 32(7): e4231, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29500932

RESUMEN

MS Binding Assays represent a label-free alternative to radioligand binding assays. In this study, we present an LC-ESI-MS/MS method for the quantification of (R,R)-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol [(R,R)-D-84, (R,R)-1], (S,S)-reboxetine [(S,S)-2], and (S)-citalopram [(S)-3] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)-D-84], norepinephrine [NET, (S,S)-reboxetine] and serotonin transporter [SERT, (S)-citalopram], respectively. The developed LC-ESI-MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC-ESI-MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration-based MS Binding Assays were performed for all three monoamine transporters based on this LC-ESI-MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)-D-84 toward hDAT, for (S,S)-reboxetine toward hNET, and for (S)-citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far.


Asunto(s)
Compuestos de Bencidrilo/análisis , Cromatografía Liquida/métodos , Citalopram/análisis , Morfolinas/análisis , Piperidinas/análisis , Simportadores/metabolismo , Animales , Compuestos de Bencidrilo/metabolismo , Citalopram/metabolismo , Humanos , Morfolinas/metabolismo , Piperidinas/metabolismo , Unión Proteica , Reboxetina , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
8.
Chirality ; 29(6): 294-303, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28437017

RESUMEN

(+)-R,R-D-84 ((+)-R,R-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol) is a promising pharmacological tool for the dopamine transporter (DAT), due to its high affinity and selectivity for this target. In this study, an analytical method to ascertain the enantiomeric purity of this compound was established. For this purpose, a high-performance liquid chromatographic (HPLC) method, based on a cellulose derived chiral stationary phase (CSP) was developed. The method was characterized concerning its specificity, linearity, and range. It was shown that the method is suitable to determine an enantiomeric excess of up to 99.8%. With only a few adjustments, this analytical CSP-HPLC method is also well suited to separate (+)-R,R-D-84 from its enantiomer in a semipreparative scale.


Asunto(s)
Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Piperidinas/química , Piperidinas/farmacología , Compuestos de Bencidrilo/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Piperidinas/aislamiento & purificación , Estereoisomerismo
9.
Chirality ; 29(1): 48-56, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28019695

RESUMEN

For the enantiopure synthesis of novel chiral GABA uptake inhibitors, nipecotic acid (1) is an important key precursor. To characterize accurately the pharmacological activity of these interesting target compounds, the determination of the correct enantiomeric purity of nipecotic acid as the starting material is indispensable. In this report, a sensitive high-performance liquid chromatography (HPLC) based method for the separation and quantitation of both enantiomers of nipecotic acid as 1-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl) derivatives (5) on a Chiralpak ID-3 column (Daicel, Illkirch, France) was established. UV/Vis-detection at 490 nm was chosen to ensure a selective determination of even highly enantioenriched samples. Reliability was demonstrated by validation of specificity, linearity, lower limit of quantification (LLOQ), accuracy, and precision. By spiking highly enantiopure samples with small amounts of racemic rac-5, it was proven that the established HPLC method is able to detect even slight changes in enantiomeric excess (ee) values. Thus, accurate determination of ee values up to 99.87% ee for (R)-5 and 99.86% ee for (S)-5 over a linear concentration range of 1-1500 µM for (R)-5 and of 1-1455 µM for (S)-5 could be demonstrated.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácidos Nipecóticos/química , Nitrocompuestos/química , Oxadiazoles/química , Reproducibilidad de los Resultados , Estereoisomerismo
10.
Bioorg Med Chem ; 24(9): 2072-96, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27039250

RESUMEN

In this study, we disclose the design and synthesis of novel 4-susbtituted nipecotic acid derivatives as inhibitors of the GABA transporter mGAT1. Based on molecular modeling studies the compounds are assumed to adopt a binding pose similar to that of the potent mGAT1 inhibitor nipecotic acid. As substitution in 4-position should not cause an energetically unfavorable orientation of nipecotic acid as it is the case for N-substituted derivatives this is expected to lead to highly potent binders. For the synthesis of novel 4-substituted nipecotic acid derivatives a linear synthetic strategy was employed. As a key step, palladium catalyzed cross coupling reactions were used to attach the required biaryl moieties to the ω-position of the alkenyl- or alkynyl spacers of varying length in the 4-position of the nipecotic acid scaffold. The resulting amino acids were characterized with respect to their binding affinities and inhibitory potencies at mGAT1. Though the biological activities found were generally insignificant to poor, two compounds, one of which possesses a reasonable binding affinity for mGAT1, rac-57, the other a notable inhibitory potency at mGAT4, rac-84, both displaying a slight subtype selectivity for the individual transporters, could be identified.


Asunto(s)
Inhibidores de Recaptación de GABA/farmacología , Ácidos Nipecóticos/síntesis química , Evaluación Preclínica de Medicamentos , Ácidos Nipecóticos/farmacología
11.
Bioorg Med Chem ; 23(6): 1284-306, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25698617

RESUMEN

In this paper, we disclose the design and synthesis of a series of 2-substituted pyrrolidine-2-yl-acetic acid as core structures and the N-arylalkyl derivatives thereof as potential GABA transport inhibitors. The 2-position in the side chain of pyrrolidine-2-yl-acetic acid derivatives was substituted with alkyl, hydroxy and amino groups to modulate the activity and selectivity to mGAT1 and mGAT4 proteins. SAR studies of the compounds performed for the four mouse GABA transporter proteins (mGAT1-mGAT4) implied significant potencies and subtype selectivities for 2-hydroxy-2-pyrrolidine-2-yl-acetic acid derivatives. The racemate rac-(u)-13c exhibited the highest potency (pIC50 5.67) at and selectivity for mGAT1 in GABA uptake assays. In fact, the potency of rac-(u)-13c at hGAT-1 (pIC50 6.14) was even higher than its potency at mGAT1. These uptake results for rac-(u)-13c are in line with the binding affinities to the aforesaid proteins mGAT1 (pKi 6.99) and hGAT-1 (pKi 7.18) determined by MS Binding Assay based on NO711 as marker quantified by LC-ESI-MS-MS analysis. Interestingly, the 2-hydroxy-2-pyrrolidine-2-yl-acetic acid rac-(u)-13d containing 2-{[tris(4-methoxyphenyl)]methoxy} ethyl group at the nitrogen atom of the pyrrolidine ring showed high potency at mGAT4 and a comparatively better selectivity for this protein (>15 against mGAT3) than the well known mGAT4 uptake inhibitor (S)-SNAP-5114.


Asunto(s)
Diseño de Fármacos , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Prolina/análogos & derivados , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ratones , Estructura Molecular , Prolina/síntesis química , Prolina/química , Prolina/farmacología , Relación Estructura-Actividad
12.
Anal Bioanal Chem ; 407(2): 471-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450050

RESUMEN

We herein present the first LC-MS/MS quantification method for indatraline, a highly potent nonselective inhibitor of the three monoamine transporters (for dopamine, DAT; norepinephrine, NET; serotonin, SERT), and its application to MS Binding Assays. For HPLC, an R18 column with a mobile phase composed of acetonitrile and ammonium bicarbonate buffer (5 mmol L(-1), pH 10.0) in a ratio of 90:10 (v/v) at a flow rate of 600 µL min(-1) was used. Recording indatraline at m/z 292.2/261.0 and ((2)H(7))-indatraline, employed as internal standard, at m/z 299.2/268.0 allowed reliable quantification from 5 pmol L(-1) (LLOQ) to 5 nmol L(-1) in biological matrices without additional sample preparation. Validation of the developed quantification method showed that selectivity, calibration standard curve, accuracy, as well as precision meet the criteria of the CDER guideline. Applying this method to mass spectrometry (MS) Binding Assays, a label-free MS-based alternative to conventional radioligand binding assays, binding of indatraline's eutomer, (1R,3S)-indatraline, towards NET could be characterized directly for the first time, revealing an equilibrium dissociation constant (K d) of 805 pmol L(-1). Additionally, it could be shown that the established MS Binding Assays enable characterization of test compounds in competition experiments. As the established setup is based on a 96-well format and an LC MS/MS method with a short chromatographic cycle time (1.5 min), the developed MS Binding Assays enable considerable throughput and are therefore well suited as substitute for corresponding radioligand binding assays.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Indanos/análisis , Indanos/metabolismo , Metilaminas/análisis , Metilaminas/metabolismo , Espectrometría de Masas en Tándem/métodos , Unión Competitiva , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Ensayo de Unión Radioligante , Sensibilidad y Especificidad , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
13.
Anal Chem ; 86(15): 7575-83, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25007119

RESUMEN

Transport assays for neurotransmitters based on radiolabeled substrates are widely spread and often indispensable in basic research and the drug development process, although the use of radioisotopes is inherently coupled to issues concerning radioactive waste and safety precautions. To overcome these disadvantages, we developed mass spectrometry (MS)-based transport assays for γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system (CNS). These "MS Transport Assays" provide all capabilities of [(3)H]GABA transport assays and therefore represent the first substitute for the latter. The performance of our approach is demonstrated for GAT1, the most important GABA transporter (GAT) subtype. As GABA is endogenously present in COS-7 cells employed as hGAT1 expression system, ((2)H6)GABA was used as a substrate to differentiate transported from endogenous GABA. To record transported ((2)H6)GABA, a highly sensitive, short, robust, and reliable HILIC-ESI-MS/MS quantification method using ((2)H2)GABA as an internal standard was developed and validated according to the Center for Drug Evaluation and Research (CDER) guidelines. Based on this LC-MS quantification, a setup to characterize hGAT1 mediated ((2)H6)GABA transport in a 96-well format was established, that enables automated processing and avoids any sample preparation. The K(m) value for ((2)H6)GABA determined for hGAT1 is in excellent agreement with results obtained from [(3)H]GABA uptake assays. In addition, the established assay format enables efficient determination of the inhibitory potency of GAT1 inhibitors, is capable of identifying those inhibitors transported as substrates, and furthermore allows characterization of efflux. The approach described here combines the strengths of LC-MS/MS with the high efficiency of transport assays based on radiolabeled substrates and is applicable to all GABA transporter subtypes.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Células COS , Chlorocebus aethiops , Cromatografía Liquida , Proteínas Transportadoras de GABA en la Membrana Plasmática , Radiometría
14.
Toxicol Lett ; 394: 23-31, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387764

RESUMEN

Intoxications with organophosphorus compounds (OPCs) effect a severe impairment of cholinergic neurotransmission that, as a result of overstimulation may lead to desensitization of nicotinic acetylcholine receptors (nAChRs) and finally to death due to respiratory paralysis. So far, therapeutics, that are capable to address and revert desensitized neuromuscular nAChRs into their resting, i.e. functional state are still missing. Still, among a class of compounds termed bispyridinium salts, which are characterized by the presence of two pyridinium subunits, constituents have been identified, that can counteract organophosphate poisoning by resensitizing desensitized nAChRs. According to comprehensive modeling studies this effect is mediated by an allosteric binding site at the nAChR termed MB327-PAM-1 site. For MB327, the most prominent representative of the bispyridinium salts and all other analogues studied so far, the affinity for the aforementioned binding site and the intrinsic activity measured in ex vivo and in in vivo experiments are distinctly too low, to meet the criteria to be fulfilled for therapeutic use. Hence, in order to identify new compounds with higher affinities for the MB327-PAM-1 binding site, as a basic requirement for an enhanced potency, two compound libraries, the ChemDiv library with 60 constituents and the Tocriscreen Plus library with 1280 members have been screened for hit compounds addressing the MB327-PAM-1 binding site, utilizing the [2H6]MB327 MS Binding Assay recently developed by us. This led to the identification of a set of 10 chemically diverse compounds, all of which exhibit an IC50 value of ≤ 10 µM (in the [2H6]MB327 MS Binding Assay), which had been defined as selection criteria. The three most affine ligands, which besides a quinazoline scaffold share similarities with regard to the substitution pattern and the nature of the substituents, are UNC0638, UNC0642 and UNC0646. With binding affinities expressed as pKi values of 6.01 ± 0.10, 5.97 ± 0.05 and 6.23 ± 0.02, respectively, these compounds exceed the binding affinity of MB327 by more than one log unit. This renders them promising starting points for the development of drugs for the treatment of organophosphorus poisoning by addressing the MB327-PAM-1 binding site of the nAChR.


Asunto(s)
Intoxicación por Organofosfatos , Compuestos de Piridinio , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Sales (Química)/metabolismo , Sales (Química)/uso terapéutico , Relación Estructura-Actividad , Sitios de Unión , Intoxicación por Organofosfatos/tratamiento farmacológico , Ligandos
15.
Toxicol Lett ; 392: 94-106, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216073

RESUMEN

Intoxications with organophosphorus compounds (OPCs) based chemical warfare agents and insecticides may result in a detrimental overstimulation of muscarinic and nicotinic acetylcholine receptors evolving into a cholinergic crisis leading to death due to respiratory failure. In the case of the nicotinic acetylcholine receptor (nAChR), overstimulation leads to a desensitization of the receptor, which cannot be pharmacologically treated so far. Still, compounds interacting with the MB327 binding site of the nAChR like the bispyridinium salt MB327 have been found to re-establish the functional activity of the desensitized receptor. Only recently, a series of quinazoline derivatives with UNC0642 as one of the most prominent representatives has been identified to address the MB327 binding site of the nAChR, as well. In this study, UNC0642 has been utilized as a reporter ligand to establish new Binding Assays for this target. These assays follow the concept of MS Binding Assays for which by assessing the amount of bound reporter ligand by mass spectrometry no radiolabeled material is required. According to the results of the performed MS Binding Assays comprising saturation and competition experiments it can be concluded, that UNC0642 used as a reporter ligand addresses the MB327 binding site of the Torpedo-nAChR. This is further supported by the outcome of ex vivo studies carried out with poisoned rat diaphragm muscles as well as by in silico studies predicting the binding mode of UNC0646, an analog of UNC0642 with the highest binding affinity, in the recently proposed binding site of MB327 (MB327-PAM-1). With UNC0642 addressing the MB327 binding site of the Torpedo-nAChR, this and related quinazoline derivatives represent a promising starting point for the development of novel ligands of the nAChR as antidotes for the treatment of intoxications with organophosphorus compounds. Further, the new MS Binding Assays are a potent alternative to established assays and of particular value, as they do not require the use of radiolabeled material and are based on a commercially available compound as reporter ligand, UNC0642, exhibiting one of the highest binding affinities for the MB327 binding site known so far.


Asunto(s)
Compuestos de Piridinio , Receptores Nicotínicos , Ratas , Animales , Receptores Nicotínicos/metabolismo , Ligandos , Relación Estructura-Actividad , Sitios de Unión , Quinazolinas , Compuestos Organofosforados , Torpedo/metabolismo
16.
Toxicol Lett ; 397: 151-162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759939

RESUMEN

Poisoning with organophosphorus compounds, which can lead to a cholinergic crisis due to the inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine (ACh) in the synaptic cleft, is a serious problem for which treatment options are currently insufficient. Our approach to broadening the therapeutic spectrum is to use agents that interact directly with desensitized nicotinic acetylcholine receptors (nAChRs) in order to induce functional recovery after ACh overstimulation. Although MB327, one of the most prominent compounds investigated in this context, has already shown positive properties in terms of muscle force recovery, this compound is not suitable for use as a therapeutic agent due to its insufficient potency. By means of in silico studies based on our recently presented allosteric binding pocket at the nAChR, i.e. the MB327-PAM-1 binding site, three promising MB327 analogs with a 4-aminopyridinium ion partial structure (PTM0056, PTM0062, and PTM0063) were identified. In this study, we present the synthesis and biological evaluation of a series of new analogs of the aforementioned compounds with a 4-aminopyridinium ion partial structure (PTM0064-PTM0072), as well as hydroxy-substituted analogs of MB327 (PTMD90-0012 and PTMD90-0015) designed to substitute entropically unfavorable water clusters identified during molecular dynamics simulations. The compounds were characterized in terms of their binding affinity towards the aforementioned binding site by applying the UNC0642 MS Binding Assays and in terms of their muscle force reactivation in rat diaphragm myography. More potent compounds were identified compared to MB327, as some of them showed a higher affinity towards MB327-PAM-1 and also a higher recovery of neuromuscular transmission at lower compound concentrations. To improve the treatment of organophosphate poisoning, direct targeting of nAChRs with appropriate compounds is a key step, and this study is an important contribution to this research.


Asunto(s)
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Animales , Masculino , Agentes Nerviosos/toxicidad , Ratas Wistar , Ratas , Intoxicación por Organofosfatos/tratamiento farmacológico , Diafragma/efectos de los fármacos , Diafragma/metabolismo , Relación Estructura-Actividad , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/química , Contracción Muscular/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Sitios de Unión
17.
Toxicol Lett ; 398: 91-104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768836

RESUMEN

Desensitization of nicotinic acetylcholine receptors (nAChRs) can be induced by overstimulation with acetylcholine (ACh) caused by an insufficient degradation of ACh after poisoning with organophosphorus compounds (OPCs). Currently, there is no generally applicable treatment for OPC poisoning that directly targets the desensitized nAChR. The bispyridinium compound MB327, an allosteric modulator of nAChR, has been shown to act as a resensitizer of nAChRs, indicating that drugs binding directly to nAChRs can have beneficial effects after OPC poisoning. However, MB327 also acts as an inhibitor of nAChRs at higher concentrations and can thus not be used for OPC poisoning treatment. Consequently, novel, more potent resensitizers are required. To successfully design novel ligands, the knowledge of the binding site is of utmost importance. Recently, we performed in silico studies to identify a new potential binding site of MB327, MB327-PAM-1, for which a more affine ligand, UNC0646, has been described. In this work, we performed ligand-based screening approaches to identify novel analogs of UNC0646 to help further understand the structure-affinity relationship of this compound class. Furthermore, we used structure-based screenings and identified compounds representing four new chemotypes binding to MB327-PAM-1. One of these compounds, cycloguanil, is the active metabolite of the antimalaria drug proguanil and shows a higher affinity towards MB327-PAM-1 than MB327. Furthermore, cycloguanil can reestablish the muscle force in soman-inhibited rat muscles. These results can act as a starting point to develop more potent resensitizers of nAChR and to close the gap in the treatment after OPC poisoning.


Asunto(s)
Receptores Nicotínicos , Animales , Ligandos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Sitios de Unión , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Ratas , Relación Estructura-Actividad , Masculino , Unión Proteica , Simulación del Acoplamiento Molecular , Soman , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química
18.
J Med Chem ; 67(13): 10567-10588, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917049

RESUMEN

G protein-coupled receptor G2A was postulated to be a promising target for the development of new therapeutics in neuropathic pain, acute myeloid leukemia, and inflammation. However, there is still a lack of potent, selective, and drug-like G2A agonists to be used as a chemical tool or as the starting matter for the development of drugs. In this work, we present the discovery and structure-activity relationship elucidation of a new potent and selective G2A agonist scaffold. Systematic optimization resulted in (3-(pyridin-3-ylmethoxy)benzoyl)-d-phenylalanine (T-10418) exhibiting higher potency than the reference and natural ligand 9-HODE and high selectivity among G protein-coupled receptors. With its favorable activity, a clean selectivity profile, excellent solubility, and high metabolic stability, T-10418 qualifies as a pharmacological tool to investigate the effects of G2A activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Humanos , Relación Estructura-Actividad , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Fenilalanina/farmacología , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/síntesis química , Estructura Molecular
19.
J Biol Chem ; 287(42): 35733-35746, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22896705

RESUMEN

The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [(3)H]taurine. Furthermore, most of the uptake of [(3)H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain.


Asunto(s)
Encéfalo/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Hígado/metabolismo , Taurina/metabolismo , Animales , Encéfalo/citología , Química Encefálica , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Corteza Renal/citología , Corteza Renal/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Noqueados , Conejos , Ratas , Ratas Wistar , Taurina/genética
20.
J Am Chem Soc ; 135(39): 14593-9, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-23980549

RESUMEN

Three new cytosine derived DNA modifications, 5-hydroxymethyl-2'-deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C-C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2'-deoxyuridine (hmdU). Here we report chemical studies that enlighten the chemical reactivity of the new cytosine nucleobases. We investigated their sensitivity toward oxidation and deamination and we studied the C-C bond cleaving reactivity of hmdC, fdC, and cadC in the absence and presence of thiols as biologically relevant (organo)catalysts. We show that hmdC is in comparison to mdC rapidly oxidized to fdC already in the presence of air. In contrast, deamination reactions were found to occur only to a minor extent. The C-C bond cleavage reactions require the presence of high concentration of thiols and are acid catalyzed. While hmdC dehydroxymethylates very slowly, fdC and especially cadC react considerably faster to dC. Thiols are active site residues in many DNA modifiying enzymes indicating that such enzymes could play a role in an alternative active DNA demethylation mechanism via deformylation of fdC or decarboxylation of cadC. Quantum-chemical calculations support the catalytic influence of a thiol on the C-C bond cleavage.


Asunto(s)
Citosina/análogos & derivados , Compuestos de Sulfhidrilo/química , 5-Metilcitosina/análogos & derivados , Ácidos Carboxílicos/química , Citosina/química , Desaminación , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA