Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nano Lett ; 23(10): 4431-4438, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37129264

RESUMEN

We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of ∼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.

2.
Nano Lett ; 23(14): 6645-6650, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37418703

RESUMEN

Light-matter interactions in optical cavities underpin many applications of integrated quantum photonics. Among various solid-state platforms, hexagonal boron nitride (hBN) is gaining considerable interest as a compelling van der Waals host of quantum emitters. However, progress to date has been limited by an inability to engineer simultaneously an hBN emitter and a narrow-band photonic resonator at a predetermined wavelength. Here, we overcome this problem and demonstrate deterministic fabrication of hBN nanobeam photonic crystal cavities with high quality factors over a broad spectral range (∼400 to 850 nm). We then fabricate a monolithic, coupled cavity-emitter system designed for a blue quantum emitter that has an emission wavelength of 436 nm and is induced deterministically by electron beam irradiation of the cavity hotspot. Our work constitutes a promising path to scalable on-chip quantum photonics and paves the way to quantum networks based on van der Waals materials.

3.
Nano Lett ; 23(24): 11802-11808, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38085099

RESUMEN

We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.

4.
Nano Lett ; 22(15): 6141-6148, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867018

RESUMEN

Resonant metasurfaces provide a unique platform for enhancing multiwave nonlinear interactions. However, the difficulties over mode matching and material transparency place significant challenges in the enhancement of these multiwave processes. Here we demonstrate efficient nonlinear sum-frequency generation (SFG) in multiresonant GaP metasurfaces based on guided-wave bound-state in the continuum resonances. The excitation of the metasurface by two near-infrared input beams generates strong SFG in the visible spectrum with a conversion efficiency of 2.5 × 10-4 W-1, 2 orders of magnitude higher than the one reported in Mie-type resonant metasurfaces. In addition, we demonstrate the nontrivial polarization dependence on the SFG process. In contrast to harmonic generation, the SFG process is enhanced when using nonparallel polarized input-beams. Importantly, by varying the input pump beam polarization it is possible to direct the SFG emission to different diffraction orders, thereby opening up new opportunities for nonlinear light sources and infrared to visible light conversion.

5.
Nano Lett ; 22(22): 8917-8924, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36354246

RESUMEN

Reconfigurable metamaterials require constituent nanostructures to demonstrate switching of shapes with external stimuli. Yet, a longstanding challenge is in overcoming stiction caused by van der Waals forces in the deformed configuration, which impedes shape recovery. Here, we introduce stiff shape memory polymers. This designer material has a storage modulus of ∼5.2 GPa at room temperature and ∼90 MPa in the rubbery state at 150 °C, 1 order of magnitude higher than those in previous reports. Nanopillars with diameters of ∼400 nm and an aspect ratio as high as ∼10 were printed by two-photon lithography. Experimentally, we observe shape recovery as collapsed and touching structures overcome stiction to stand back up. We develop a theoretical model to explain the recoverability of these sub-micrometer structures. Reconfigurable structural color prints with a resolution of 21150 dots per inch and holograms are demonstrated, indicating potential applications of the stiff shape memory polymers in high-resolution reconfigurable nanophotonics.


Asunto(s)
Nanoestructuras , Materiales Inteligentes , Polímeros/química , Impresión , Nanoestructuras/química , Fotones
6.
Nano Lett ; 22(18): 7432-7440, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069429

RESUMEN

It has been long known that low molecular weight resists can achieve a very high resolution, theoretically close to the probe diameter of the electron beam lithography (EBL) system. Despite technological improvements in EBL systems, the advances in resists have lagged behind. Here we demonstrate that a low-molecular-mass single-source precursor resist (based on cadmium(II) ethylxanthate complexed with pyridine) is capable of a achieving resolution (4 nm) that closely matches the measured probe diameter (∼3.8 nm). Energetic electrons enable the top-down radiolysis of the resist, while they provide the energy to construct the functional material from the bottom-up─unit cell by unit cell. Since this occurs only within the volume of resist exposed to primary electrons, the minimum size of the patterned features is close to the beam diameter. We speculate that angstrom-scale patterning of functional materials is possible with single-source precursor resists using an aberration-corrected electron beam writer with a spot size of ∼1 Å.

7.
Nano Lett ; 20(12): 8745-8751, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33206536

RESUMEN

Resonant metasurfaces are an attractive platform for enhancing the nonlinear optical processes, such as second harmonic generation (SHG), since they can generate large local electromagnetic fields while relaxing the phase-matching requirements. Here, we demonstrate visible range, continuous wave (CW) SHG by combining the attractive material properties of gallium phosphide with high quality-factor photonic modes enabled by bound states in the continuum. We obtain efficiencies around 5e-5% W-1 when the system is pumped at 1200 nm wavelength with CW intensities of 1 kW/cm2. Moreover, we measure external efficiencies of 0.1% W-1 with pump intensities of only 10 MW/cm2 for pulsed irradiation. This efficiency is higher than the values previously reported for dielectric metasurfaces, but achieved here with pump intensities that are two orders of magnitude lower. These results take metasurface-based SHG a step closer to practical applications.

8.
Nano Lett ; 20(8): 5655-5661, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32603127

RESUMEN

A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie resonances and Van Hove singularities. On the basis of these concepts, we experimentally demonstrate a directional GaAs nanolaser at cryogenic temperatures with well-defined, in-plane emission, which, moreover, can be controlled by selective excitation. The lasing threshold is shown to be significantly reduced by optimizing the interparticle gap such that the optimal near-field confinement is achieved at a resonant wavelength corresponding to the highest gain of GaAs. We show that the lasing performance of this nanolaser is orders of magnitude better than a nanowire-based laser of the same dimensions. The present work provides design guidelines for high performance in-plane emission nanolasers, which may find applications in future photonic integrated circuits.

9.
Nano Lett ; 20(8): 6005-6011, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32584048

RESUMEN

Solid-state room-temperature lasing with tunability in a wide range of wavelengths is desirable for many applications. To achieve this, besides an efficient gain material with a tunable emission wavelength, a high quality-factor optical cavity is essential. Here, we combine a film of colloidal CdSe/CdZnS core-shell nanoplatelets with square arrays of nanocylinders made of titanium dioxide to achieve optically pumped lasing at visible wavelengths and room temperature. The all-dielectric arrays support bound states in the continuum (BICs), which result from lattice-mediated Mie resonances and boast infinite quality factors in theory. In particular, we demonstrate lasing from a BIC that originates from out-of-plane magnetic dipoles oscillating in phase. By adjusting the diameter of the cylinders, we tune the lasing wavelength across the gain bandwidth of the nanoplatelets. The spectral tunability of both the cavity resonance and nanoplatelet gain, together with efficient light confinement in BICs, promises low-threshold lasing with wide selectivity in wavelengths.

10.
Small ; : e1800682, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29952060

RESUMEN

In the growing list of 2D semiconductors as potential successors to silicon in future devices, metal-halide perovskites have recently joined the family. Unlike other conversional 2D covalent semiconductors such as graphene, transition metal dichalcogenides, black phosphorus, etc., 2D perovskites are ionic materials, affording many distinct properties of their own, including high photoluminescence quantum efficiency, balanced large exciton binding energy and oscillator strength, and long carrier diffusion length. These unique properties make 2D perovskites potential candidates for optoelectronic and photonic devices such as solar cells, light-emitting diodes, photodetectors, nanolasers, waveguides, modulators, and so on, which represent a relatively new but exciting and rapidly expanding area of research. In this Review, the recent advances in emerging 2D metal-halide perovskites and their applications in the fields of optoelectronics and photonics are summarized and insights into the future direction of these fields are offered.

11.
Nano Lett ; 15(7): 4571-7, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26043362

RESUMEN

Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 µJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

12.
Nano Lett ; 14(10): 5995-6001, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25118830

RESUMEN

Near-infrared (NIR) solid-state micro/nanolasers are important building blocks for true integration of optoelectronic circuitry. Although significant progress has been made in III-V nanowire lasers with achieving NIR lasing at room temperature, challenges remain including low quantum efficiencies and high Auger losses. Importantly, the obstacles toward integrating one-dimensional nanowires on the planar ubiquitous Si platform need to be effectively tackled. Here we demonstrate a new family of planar room-temperature NIR nanolasers based on organic-inorganic perovskite CH3NH3PbI(3-a)X(a) (X = I, Br, Cl) nanoplatelets. Their large exciton binding energies, long diffusion lengths, and naturally formed high-quality planar whispering-gallery mode cavities ensure adequate gain and efficient optical feedback for low-threshold optically pumped in-plane lasing. We show that these remarkable wavelength tunable whispering-gallery nanolasers can be easily integrated onto conductive platforms (Si, Au, indium tin oxide, and so forth). Our findings open up a new class of wavelength tunable planar nanomaterials potentially suitable for on-chip integration.

13.
Adv Sci (Weinh) ; 11(13): e2303929, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38093513

RESUMEN

Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.

14.
Nat Commun ; 15(1): 2281, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480721

RESUMEN

Solid state single-photon sources with high brightness and long coherence time are promising qubit candidates for modern quantum technology. To prevent decoherence processes and preserve the integrity of the qubits, decoupling the emitters from their surrounding environment is essential. To this end, interfacing single photon emitters (SPEs) with high-finesse cavities is required, especially in the strong coupling regime, when the interaction between emitters can be mediated by cavity fields. However, achieving strong coupling at elevated temperatures is challenging due to competing incoherent processes. Here, we address this long-standing problem by using a quantum system, which comprises a class of SPEs in hexagonal boron nitride and a dielectric cavity based on bound states in the continuum (BIC). We experimentally demonstrate, at room temperature, strong coupling of the system with a large Rabi splitting of ~4 meV thanks to the combination of the narrow linewidth and large oscillator strength of the emitters and the efficient photon trapping of the BIC cavity. Our findings unveil opportunities to advance the fundamental understanding of quantum dynamical system in strong coupling regime and to realise scalable quantum devices capable of operating at room temperature.

15.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38550347

RESUMEN

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

16.
J Nanosci Nanotechnol ; 13(5): 3464-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23858880

RESUMEN

This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.


Asunto(s)
Grafito/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polietileno/química , Impedancia Eléctrica , Ensayo de Materiales , Óxidos/química , Tamaño de la Partícula , Electricidad Estática , Propiedades de Superficie
17.
Adv Mater ; 35(1): e2207317, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308036

RESUMEN

Emerging immersive visual communication technologies require light sources with complex functionality for dynamic control of polarization, directivity, wavefront, spectrum, and intensity of light. Currently, this is mostly achieved by free space bulk optic elements, limiting the adoption of these technologies. Flat optics based on artificially structured metasurfaces that operate at the sub-wavelength scale are a viable solution, however, their integration into electrically driven devices remains challenging. Here, a radically new approach to monolithic integration of a dielectric metasurface into a perovskite light-emitting transistor is demonstrated. It is shown that nanogratings directly structured on top of the transistor channel yield an 8-fold increase of electroluminescence intensity and dynamic tunability of polarization. This new light-emitting metatransistor device concept opens unlimited opportunities for light management strategies based on metasurface design and integration.

18.
ACS Nano ; 17(3): 2725-2736, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36661346

RESUMEN

All-optical nanothermometry has become a powerful, remote tool for measuring nanoscale temperatures in applications ranging from medicine to nano-optics and solid-state nanodevices. The key features of any candidate nanothermometer are brightness, sensitivity, and (signal, spatial, and temporal) resolution. Here, we demonstrate a real-time, diamond-based nanothermometry technique with excellent sensitivity (1.8% K-1) and record-high resolution (5.8 × 104 K Hz-1/2 W cm-2) based on codoped nanodiamonds. The distinct performance of our approach stems from two factors: (i) temperature sensors─nanodiamonds cohosting two group IV color centers─engineered to emit spectrally separated Stokes and anti-Stokes fluorescence signals under excitation by a single laser source and (ii) a parallel detection scheme based on filtering optics and high-sensitivity photon counters for fast readout. We demonstrate the performance of our method by monitoring temporal changes in the local temperature of a microcircuit and a MoTe2 field-effect transistor. Our work advances a powerful, alternative strategy for time-resolved temperature monitoring and mapping of micro-/nanoscale devices such as microfluidic channels, nanophotonic circuits, and nanoelectronic devices, as well as complex biological environments such as tissues and cells.

19.
Heliyon ; 9(6): e17418, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37366521

RESUMEN

It is essential to achieve herd immunity in order to control the COVID-19 pandemic, and this requires a high level of vaccination rate. Despite the importance of vaccination, hesitancy and unwillingness in receiving the COVID-19 vaccine still exists. It is therefore crucial to comprehend the intentions of adults regarding COVID-19 vaccination, which is beneficial for establishing community immunity and an efficient future pandemic response. An online survey was administered to 2722 adults in Vietnam. Cronbach's alpha, exploratory factor analysis (EFA), and confirmatory factor analysis (CFA) were used to test the reliability and validity of the developed scales. Then, structural equational modeling (SEM) was employed to test correlations. This study found that favorable attitudes toward COVID-19 vaccines played the most important role in shaping adults' intention to receive these vaccines, followed by perceived behavioral control, perceived benefits of COVID-19 vaccines, and subjective norms. Concurrently, all three core dimensions of the theory of planned behavior mediated the link between the perceived benefits of COVID-19 vaccines and the intention to receive them. Also, there were significant differences between males and females in the way they formed this intention. The findings of this study offer valuable guidance for practitioners on how to encourage adults to receive COVID-19 vaccinations, as well as how to limit the transmission of the COVID-19 virus.

20.
ACS Nano ; 17(20): 19981-19992, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37610378

RESUMEN

The strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core-shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core-shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, high photo- and thermal stability, and considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus provides insights into the development of high-performance colloidal optoelectronic device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA