Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3974, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730230

RESUMEN

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of nine different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Fragmentos Fab de Inmunoglobulinas , Mutación , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ingeniería de Proteínas/métodos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/química , Afinidad de Anticuerpos , Antígenos/inmunología , Antígenos/genética
2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293170

RESUMEN

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.

3.
STAR Protoc ; 2(4): 100869, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34568839

RESUMEN

Here, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for monoclonal antibodies that directly compete with angiotensin-converting enzyme 2 for binding. Six to 10 antibodies can be assessed in parallel. This approach has been shown to determine escape mutants that are consistent with more laborious SARS-CoV-2 pseudoneutralization assays. For complete details on the use and execution of this protocol, please refer to Francino-Urdaniz et al. (2021).


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Análisis Mutacional de ADN/métodos , Mutación , SARS-CoV-2/genética , Saccharomyces cerevisiae/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , COVID-19/metabolismo , COVID-19/virología , Humanos , Saccharomyces cerevisiae/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
bioRxiv ; 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33758848

RESUMEN

The potential emergence of SARS-CoV-2 Spike (S) escape mutants is a threat to reduce the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutations landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural COVID-19 infection. Escape mutations predominantly mapped to the periphery of the ACE2 recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

5.
Cell Rep ; 36(9): 109627, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34416153

RESUMEN

The potential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) escape mutants is a threat to the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutation landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural coronavirus disease 2019 (COVID-19) infection. Escape mutations predominantly mapped to the periphery of the angiotensin-converting enzyme 2 (ACE2) recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA