Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069150

RESUMEN

Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development.


Asunto(s)
Lignina , Pleurotus , Lignina/metabolismo , Pleurotus/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34769377

RESUMEN

Root selection of their associated microbiome composition and activities is determined by the plant's developmental stage and distance from the root. Total gene abundance, structure and functions of root-associated and rhizospheric microbiomes were studied throughout wheat growth season under field conditions. On the root surface, abundance of the well-known wheat colonizers Proteobacteria and Actinobacteria decreased and increased, respectively, during spike formation, whereas abundance of Bacteroidetes was independent of spike formation. Metagenomic analysis combined with functional co-occurrence networks revealed a significant impact of plant developmental stage on its microbiome during the transition from vegetative growth to spike formation. For example, gene functions related to biofilm and sensorial movement, antibiotic production and resistance and carbons and amino acids and their transporters. Genes associated with these functions were also in higher abundance in root vs. the rhizosphere microbiome. We propose that abundance of transporter-encoding genes related to carbon and amino acid, may mirror the availability and utilization of root exudates. Genes related to antibiotic resistance mechanisms were abundant during vegetative growth, while after spike formation, genes related to the biosynthesis of various antibiotics were enriched. This observation suggests that during root colonization and biofilm formation, bacteria cope with competitor's antibiotics, whereas in the mature biofilm stage, they invest in inhibiting new colonizers. Additionally, there is higher abundance of genes related to denitrification in rhizosphere compared to root-associated microbiome during wheat growth, possibly due to competition with the plant over nitrogen in the root vicinity. We demonstrated functional and phylogenetic division in wheat root zone microbiome in both time and space: pre- and post-spike formation, and root-associated vs. rhizospheric niches. These findings shed light on the dynamics of plant-microbe and microbe-microbe interactions in the developing root zone.


Asunto(s)
Bacterias/crecimiento & desarrollo , Metagenoma , Microbiota , Raíces de Plantas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Triticum/genética , Triticum/microbiología
3.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31101610

RESUMEN

The function of small secreted proteins (SSPs) in saprotrophic fungi is, for the most part, unknown. The white-rot mushroom Pleurotus ostreatus produces considerable amounts of SSPs at the onset of secondary metabolism, during colony development, and in response to chemical compounds such as 5-hydroxymethylfurfural and aryl alcohols. Genetic manipulation of Ssp1, by knockdown (KDssp1) or overexpression (OEssp1), indicated that they are, in fact, involved in the regulation of the ligninolytic system. To elucidate their potential involvement in fungal development, quantitative secretome analysis was performed during the trophophase and the idiophase and at a transition point between the two growth phases. The mutations conferred a time shift in the secretion and expression patterns: OEssp1 preceded the entrance to idiophase and secondary metabolism, while KDssp1 was delayed. This was also correlated with expression patterns of selected genes. The KDssp1 colony aged at a slower pace, accompanied by a slower decline in biomass over time. In contrast, the OEssp1 strain exhibited severe lysis and aging of the colony at the same time point. These phenomena were accompanied by variations in yellow pigment production, characteristic of entrance of the wild type into idiophase. The pigment was produced earlier and in a larger amount in the OEssp1 strain and was absent from the KDssp1 strain. Furthermore, the dikaryon harboring OEssp1 exhibited a delay in the initiation of fruiting body formation as well as earlier aging. We propose that Ssp1 might function as a part of the fungal communication network and regulate the pattern of fungal development and metabolism in P. ostreatusIMPORTANCE Small secreted proteins (SSPs) are common in fungal saprotrophs, but their roles remain elusive. As such, they comprise part of a gene pool which may be involved in governing fungal lifestyles not limited to symbiosis and pathogenicity, in which they are commonly referred to as "effectors." We propose that Ssp1 in the white-rot fungus Pleurotus ostreatus regulates the transition from primary to secondary metabolism, development, aging, and fruiting body initiation. Our observations uncover a novel regulatory role of effector-like SSPs in a saprotroph, suggesting that they may act in fungal communication as well as in response to environmental cues. The presence of Ssp1 homologues in other fungal species supports a common potential role in environmental sensing and fungal development.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Pleurotus/genética , Proteínas Fúngicas/metabolismo , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(39): 10854-9, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621442

RESUMEN

Efficient breakdown of lignocellulose polymers into simple molecules is a key technological bottleneck limiting the production of plant-derived biofuels and chemicals. In nature, plant biomass degradation is achieved by the action of a wide range of microbial enzymes. In aerobic microorganisms, these enzymes are secreted as discrete elements in contrast to certain anaerobic bacteria, where they are assembled into large multienzyme complexes termed cellulosomes. These complexes allow for very efficient hydrolysis of cellulose and hemicellulose due to the spatial proximity of synergistically acting enzymes and to the limited diffusion of the enzymes and their products. Recently, designer cellulosomes have been developed to incorporate foreign enzymatic activities in cellulosomes so as to enhance lignocellulose hydrolysis further. In this study, we complemented a cellulosome active on cellulose and hemicellulose by addition of an enzyme active on lignin. To do so, we designed a dockerin-fused variant of a recently characterized laccase from the aerobic bacterium Thermobifida fusca The resultant chimera exhibited activity levels similar to the wild-type enzyme and properly integrated into the designer cellulosome. The resulting complex yielded a twofold increase in the amount of reducing sugars released from wheat straw compared with the same system lacking the laccase. The unorthodox use of aerobic enzymes in designer cellulosome machinery effects simultaneous degradation of the three major components of the plant cell wall (cellulose, hemicellulose, and lignin), paving the way for more efficient lignocellulose conversion into soluble sugars en route to alternative fuels production.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Celulosomas/metabolismo , Lacasa/metabolismo , Lignina/metabolismo , Triticum/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosa/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Hidrólisis , Cinética , Unión Proteica , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Cohesinas
5.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547488

RESUMEN

ß-Glucosidases are key enzymes in the process of cellulose utilization. It is the last enzyme in the cellulose hydrolysis chain, which converts cellobiose to glucose. Since cellobiose is known to have a feedback inhibitory effect on a variety of cellulases, ß-glucosidase can prevent this inhibition by hydrolyzing cellobiose to non-inhibitory glucose. While the optimal temperature of the Clostridium thermocellum cellulosome is 70 °C, C. thermocellum ß-glucosidase A is almost inactive at such high temperatures. Thus, in the current study, a random mutagenesis directed evolutionary approach was conducted to produce a thermostable mutant with Kcat and Km, similar to those of the wild-type enzyme. The resultant mutant contained two mutations, A17S and K268N, but only the former was found to affect thermostability, whereby the inflection temperature (Ti) was increased by 6.4 °C. A17 is located near the central cavity of the native enzyme. Interestingly, multiple alignments revealed that position 17 is relatively conserved, whereby alanine is replaced only by serine. Upon the addition of the thermostable mutant to the C. thermocellum secretome for subsequent hydrolysis of microcrystalline cellulose at 70 °C, a higher soluble glucose yield (243%) was obtained compared to the activity of the secretome supplemented with the wild-type enzyme.


Asunto(s)
Proteínas Bacterianas , Clostridium thermocellum , Evolución Molecular Dirigida , Calor , beta-Glucosidasa , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clostridium thermocellum/enzimología , Clostridium thermocellum/genética , Estabilidad de Enzimas/genética , Mutación Missense , beta-Glucosidasa/química , beta-Glucosidasa/genética
6.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29180372

RESUMEN

Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs.IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a soil bacterial community to disturbance. The resultant postdisturbance bacterial community composition dynamics and functionality were analyzed. The paper demonstrates the relatedness of community structure and stability under cultivation conditions prevalent in an arid area under irrigation with water of different qualities. The use of common agricultural practices to demonstrate these features has not been described before. The combination of a fundamental theoretical issue in ecology with common and concerning disturbances caused by agricultural practice makes this study unique. Furthermore, the results of the present study have applicable importance regarding soil conservation, as it enables a better characterization and monitoring of stressed soil bacterial communities and possible intervention to reduce the stress. It will also be of valued interest in coming years, as fresh water scarcity and the use of alternative water sources are expected to rise globally.


Asunto(s)
Bacterias/metabolismo , Calor/efectos adversos , Microbiota/fisiología , Microbiología del Suelo , Suelo/química , Riego Agrícola , Bacterias/efectos de los fármacos , Bacteroidetes/efectos de los fármacos , Bacteroidetes/crecimiento & desarrollo , Bacteroidetes/aislamiento & purificación , Agua Dulce/química , Microbiota/efectos de los fármacos , Proteobacteria/efectos de los fármacos , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S , Aguas Residuales/química , Agua/análisis , Agua/química , Agua/farmacología
7.
Int J Mol Sci ; 19(11)2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30373293

RESUMEN

: Pleurotus eryngii is recognized for its prominent nutritional and medicinal value. In our study, we tested the effect of glucans on lipopolysaccharide (LPS)-induced production of TNF-α. We demonstrated that glucan extracts are more effective than mill mushroom preparations. Additionally, the effectiveness of stalk-derived glucans were slightly more pronounced than of caps. Cap and stalk glucans from mill or isolated glucan competed dose-dependently with anti-Dectin-and anti-CR-3 antibodies, indicating that they contain ß-glucans recognized by these receptors. Using the dextran sulfate sodium (DSS)-inflammatory bowel disease mice model, intestinal inflammatory response to the mill preparations was measured and compared to extracted glucan fractions from caps and stalks. We found that mill and glucan extracts were very effective in downregulating IFN-γ and MIP-2 levels and that stalk-derived preparations were more effective than from caps. The tested glucans were equally effective in regulating the number of CD14/CD16 monocytes and upregulating the levels of fecal-released IgA to almost normal levels. In conclusion, the most effective glucans in ameliorating some IBD-inflammatory associated symptoms induced by DSS treatment in mice were glucan extracts prepared from the stalk of P. eryngii. These spatial distinctions may be helpful in selecting more effective specific anti-inflammatory mushrooms-derived glucans.


Asunto(s)
Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Cuerpos Fructíferos de los Hongos/química , Polisacáridos Fúngicos/farmacología , Pleurotus/química , Animales , Antiinflamatorios/uso terapéutico , Línea Celular , Femenino , Polisacáridos Fúngicos/análisis , Polisacáridos Fúngicos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C
8.
Chemistry ; 23(53): 13181-13191, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28708324

RESUMEN

Siderophores provide an established platform for studying molecular recognition principles in biological systems. Herein, the preparation of ferrichrome (FC) biomimetic analogues varying in length and polarity of the amino acid chain separating between the tripodal scaffold and the pendent FeIII chelating hydroxamic acid groups was reported. Spectroscopic and potentiometric titrations determined their iron affinity to be within the range of efficient chelators. Microbial growth promotion and iron uptake studies were conducted on E. coli, P. putida and U. maydis. A wide range of siderophore activity was observed in the current series: from a rare case of a species-specific growth promotor in P. putida to an analogue matching FC in cross-phylum activity and uptake pathway. A fluorescent conjugate of the broad-range analogue visualized siderophore destination in bacteria (periplasmic space) vs. fungi (cytosol) mapping new therapeutic targets. Quantum dots (QDs) decorated with the most potent FC analogue provided a tool for immobilization of FC-recognizing bacteria. Bacterial clusters formed around QDs may provide a platform for their selection and concentration.


Asunto(s)
Bacterias/metabolismo , Ferricromo/química , Quelantes del Hierro/química , Sideróforos/química , Transporte Biológico , Biomimética , Colorantes Fluorescentes/química , Hierro/química , Estructura Molecular , Imagen Óptica , Puntos Cuánticos/química , Relación Estructura-Actividad
9.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718825

RESUMEN

Mushroom polysaccharides are edible polymers that have numerous reported biological functions; the most common effects are attributed to ß-glucans. In recent years, it became apparent that the less abundant α-glucans also possess potent effects in various health conditions. Here we explore several Pleurotus species for their total, ß and α-glucan content. Pleurotus eryngii was found to have the highest total glucan concentrations and the highest α-glucans proportion. We also found that the stalks (stipe) of the fruit body contained higher glucan content then the caps (pileus). Since mushrooms respond markedly to changes in environmental and growth conditions, we developed cultivation methods aiming to increase the levels of α and ß-glucans. Using olive mill solid waste (OMSW) from three-phase olive mills in the cultivation substrate. We were able to enrich the levels mainly of α-glucans. Maximal total glucan concentrations were enhanced up to twice when the growth substrate contained 80% of OMSW compared to no OMSW. Taking together this study demonstrate that Pleurotus eryngii can serve as a potential rich source of glucans for nutritional and medicinal applications and that glucan content in mushroom fruiting bodies can be further enriched by applying OMSW into the cultivation substrate.


Asunto(s)
Glucanos/metabolismo , Olea/química , Pleurotus/metabolismo , Residuos , Eucalyptus/química , Glucanos/aislamiento & purificación , Pleurotus/crecimiento & desarrollo , beta-Glucanos/metabolismo
10.
Appl Environ Microbiol ; 82(14): 4070-4080, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27129968

RESUMEN

UNLABELLED: Although Mn(2+) is the most abundant substrate of versatile peroxidases (VPs), repression of Pleurotus ostreatus vp1 expression occurred in Mn(2+)-sufficient medium. This seems to be a biological contradiction. The aim of this study was to explore the mechanism of direct oxidation by VP1 under Mn(2+)-deficient conditions, as it was found to be the predominant enzyme during fungal growth in the presence of synthetic and natural substrates. The native VP1 was purified and characterized using three substrates, Mn(2+), Orange II (OII), and Reactive Black 5 (RB5), each oxidized by a different active site in the enzyme. While the pH optimum for Mn(2+) oxidation is 5, the optimum pH for direct oxidation of both dyes was found to be 3. Indeed, effective in vivo decolorization occurred in media without addition of Mn(2+) only under acidic conditions. We have determined that Mn(2+) inhibits in vitro the direct oxidation of both OII and RB5 while RB5 stabilizes both Mn(2+) and OII oxidation. Furthermore, OII was found to inhibit the oxidation of both Mn(2+) and RB5. In addition, we could demonstrate that VP1 can cleave OII in two different modes. Under Mn(2+)-mediated oxidation conditions, VP1 was able to cleave the azo bond only in asymmetric mode, while under the optimum conditions for direct oxidation (absence of Mn(2+) at pH 3) both symmetric and asymmetric cleavages occurred. We concluded that the oxidation mechanism of aromatic compounds by VP1 is controlled by Mn(2+) and pH levels both in the growth medium and in the reaction mixture. IMPORTANCE: VP1 is a member of the ligninolytic heme peroxidase gene family of the white rot fungus Pleurotus ostreatus and plays a fundamental role in biodegradation. This enzyme exhibits a versatile nature, as it can oxidize different substrates under altered environmental conditions. VPs are highly interesting enzymes due to the fact that they contain unique active sites that are responsible for direct oxidation of various aromatic compounds, including lignin, in addition to the well-known Mn(2+) binding active site. This study demonstrates the limits of versatility of P. ostreatus VP1, which harbors multiple active sites, exhibiting a broad range of enzymatic activities, but they perform differently under distinct conditions. The versatility of P. ostreatus and its enzymes is an advantageous factor in the fungal ability to adapt to changing environments. This trait expands the possibilities for the potential utilization of P. ostreatus and other white rot fungi.


Asunto(s)
Manganeso/metabolismo , Peroxidasa/metabolismo , Pleurotus/enzimología , Compuestos Azo/metabolismo , Bencenosulfonatos/metabolismo , Concentración de Iones de Hidrógeno , Naftalenosulfonatos/metabolismo , Oxidación-Reducción , Peroxidasa/aislamiento & purificación
11.
Environ Sci Technol ; 49(20): 12351-62, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26418858

RESUMEN

The widely used anticonvulsant pharmaceutical carbamazepine is recalcitrant in many environmental niches and thus poses a challenge in wastewater treatment. We followed the decomposition of carbamazepine by the white-rot fungus Pleurotus ostreatus in liquid culture compared to solid-state fermentation on lignocellulosic substrate where different enzymatic systems are active. Carbamazepine metabolites were identified using liquid chromatography-high-resolution mass spectrometry (LC-Q-TOF-MS). In liquid culture, carbamazepine was only transformed to 10,11-epoxy carbamazepine and 10,11-dihydroxy carbamazepine as a dead-end product. During solid-state fermentation, carbamazepine metabolism resulted in the generation of an additional 22 transformation products, some of which are toxic. Under solid-state-fermentation conditions, 10,11-epoxy carbamazepine was further metabolized via acridine and 10,11-dihydroxy carbamazepine pathways. The latter was further metabolized via five subpathways. When (14)C-carbonyl-labeled carbamazepine was used as the substrate, (14)C-CO2 release amounted to 17.4% of the initial radioactivity after 63 days of incubation. The proposed pathways were validated using metabolites (10,11-epoxy carbamazepine, 10,11-dihydroxy carbamazepine, and acridine) as primary substrates and following their fate at different time points. This work highlights the effect of growth conditions on the transformation pathways of xenobiotics. A better understanding of the fate of pollutants during bioremediation treatments is important for establishment of such technologies.


Asunto(s)
Carbamazepina/metabolismo , Contaminantes Ambientales/metabolismo , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Contaminantes Químicos del Agua/metabolismo , Acridinas/metabolismo , Biodegradación Ambiental , Carbamazepina/farmacocinética , Radioisótopos de Carbono/análisis , Radioisótopos de Carbono/metabolismo , Cromatografía Liquida/métodos , Contaminantes Ambientales/farmacocinética , Fermentación , Espectrometría de Masas , Aguas Residuales/química , Contaminantes Químicos del Agua/farmacocinética
12.
Environ Sci Technol ; 49(20): 12342-50, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26348877

RESUMEN

Transformation products (TPs) of environmental pollutants must be identified to understand biodegradation processes and reaction mechanisms and to assess the efficiency of treatment processes. The combination of oxidation by an electrochemical cell (EC) with analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a rapid approach for the determination and identification of TPs generated by natural microbial processes. Electrochemically generated TPs of the recalcitrant pharmaceutical carbamazepine (CBZ) were used for a target screening for TPs formed by the white-rot fungus Pleurotus ostreatus. EC with LC-HRMS facilitates detection and identification of TPs because the product spectrum is not superimposed with biogenic metabolites and elevated substrate concentrations can be used. A group of 10 TPs formed in the microbial process were detected by target screening for molecular ions, and another 4 were detected by screening on the basis of characteristic fragment ions. Three of these TPs have never been reported before. For CBZ, EC with LC-HRMS was found to be more effective than software tools in defining targets for the screening and faster than nontarget screening alone in TP identification. EC with LC-HRMS may be used to feed MS databases with spectra of possible TPs of larger numbers of environmental contaminants for an efficient target screening.


Asunto(s)
Carbamazepina/metabolismo , Técnicas Electroquímicas/métodos , Contaminantes Ambientales/metabolismo , Espectrometría de Masas/métodos , Pleurotus/metabolismo , Biodegradación Ambiental , Carbamazepina/análisis , Carbamazepina/farmacocinética , Cromatografía Liquida/métodos , Electroquímica , Contaminantes Ambientales/análisis , Contaminantes Ambientales/farmacocinética , Oxidación-Reducción
13.
Appl Microbiol Biotechnol ; 99(3): 1025-38, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25503316

RESUMEN

Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes.


Asunto(s)
Variación Genética , Lignina/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Pleurotus/enzimología , Biotecnología/métodos , Expresión Génica , Pleurotus/genética
14.
Environ Microbiol ; 16(2): 559-69, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23826671

RESUMEN

Limited freshwater (FW) availability due to climate change and increasing global populations is driving agriculture in arid and semi-arid regions to recycle vast quantities of water for irrigation. However, irrigation with treated wastewater (TWW), which contains dissolved organic matter, salts and microorganisms might alter soil microbial populations, and thus affect soil fertility. We characterized the effects of irrigation with TWW and FW on soil bacterial community composition for three consecutive years. Orchard samples were collected at the end of each of the rainy (winter) and irrigation (summer) season. Community composition, determined by 16S ribosomal DNA amplicon pyrosequencing, was highly similar in soil samples obtained at the end of three consecutive rainy seasons, regardless of irrigation season water quality. However, whereas composition in soil shifted slightly during irrigation seasons by FW irrigation, it was greatly influenced by TWW irrigation. During the irrigation season, a decrease in the relative abundance of Actinobacteria was observed; along with an increase in the relative abundance Gammaproteobacteria within TWW-irrigated soils. The return to the 'baseline state' during the rainy season demonstrates that the soil community is not resistant to anthropogenic impact imposed by irrigation water quality, yet is resilient in long term.


Asunto(s)
Riego Agrícola , Clima , Microbiología del Suelo , Aguas Residuales , Calidad del Agua , Actinobacteria/crecimiento & desarrollo , Agua Dulce , Gammaproteobacteria/crecimiento & desarrollo , Israel , Consorcios Microbianos , ARN Ribosómico 16S/genética , Estaciones del Año
15.
Environ Microbiol ; 16(7): 2157-67, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23962203

RESUMEN

Plant roots create specific microbial habitat in the soil - the rhizosphere. In this study, we characterized the rhizosphere microbiome of four host plant species to get insight into the impact of the host (host signature effect) on resident vs. active communities. Results show a distinct plant host specific signature found among wheat, maize, tomato and cucumber, based on the following three parameters: (i) each plant promoted the activity of a unique suite of soil bacterial populations; (ii) significant variations were observed in the number and the degree of dominance of active populations; and (iii) the level of contribution of active (rRNA-based) populations to the resident (DNA-based) community profiles. In the rhizoplane of all four plants, a significant reduction of diversity was observed, relative to the bulk soil. Moreover, an increase in DNA-RNA correspondence indicated higher representation of active bacterial populations in the residing rhizoplane community. This study demonstrates that the host plant determines the bacterial community composition in its immediate vicinity, especially with respect to the active populations.


Asunto(s)
ADN Bacteriano/genética , Microbiota/genética , Raíces de Plantas/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Cucumis sativus/microbiología , Solanum lycopersicum/microbiología , Filogenia , Rizosfera , Especificidad de la Especie , Triticum/microbiología , Zea mays/microbiología
16.
Environ Microbiol ; 16(1): 265-77, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24119015

RESUMEN

Lignin biodegradation by white-rot fungi is pivotal to the earth's carbon cycle. Manganese peroxidases (MnPs), the most common extracellular ligninolytic peroxidases produced by white-rot fungi, are considered key in ligninolysis. Pleurotus ostreatus, the oyster mushroom, is a preferential lignin degrader occupying niches rich in lignocellulose such as decaying trees. Here, we provide direct, genetically based proof for the functional significance of MnP to P. ostreatus ligninolytic capacity under conditions mimicking its natural habitat. When grown on a natural lignocellulosic substrate of cotton stalks under solid-state culture conditions, gene and isoenzyme expression profiles of its short MnP and versatile peroxidase (VP)-encoding gene family revealed that mnp2 was predominately expressed. mnp2, encoding the versatile short MnP isoenzyme 2 was disrupted. Inactivation of mnp2 resulted in three interrelated phenotypes, relative to the wild-type strain: (i) reduction of 14% and 36% in lignin mineralization of stalks non-amended and amended with Mn(2+), respectively; (ii) marked reduction of the bioconverted lignocellulose sensitivity to subsequent bacterial hydrolyses; and (iii) decrease in fungal respiration rate. These results may serve as the basis to clarify the roles of the various types of fungal MnPs and VPs in their contribution to white-rot decay of wood and lignocellulose in various ecosystems.


Asunto(s)
Proteínas Fúngicas/genética , Lignina/metabolismo , Peroxidasas/genética , Pleurotus/enzimología , Madera/microbiología , Secuencia de Aminoácidos , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Datos de Secuencia Molecular , Peroxidasas/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Madera/metabolismo
17.
Appl Microbiol Biotechnol ; 98(15): 6795-804, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24737058

RESUMEN

The manganese peroxidase gene family (mnps) is a part of the ligninolytic system of Pleurotus ostreatus. This gene family is comprised of nine members, mnp1-9, encoding short manganese peroxidases (short-MnPs) or versatile peroxidases (VPs). We show that unlike in Mn(2+)-amended glucose-peptone (GP) medium, where redundancy among mnps was reported, in Mn(2+)-deficient GP medium mnp4 [encoding versatile peroxidase isoenzyme 4 (VP4)] has a key and nonredundant function. The abundance of mnps transcripts at time points corresponding to the tropophase (active growth), early idiophase, and idiophase indicates that mnp4 is the predominantly expressed mnp gene and that its relative predominance is dependent on the age of the culture. In this medium, azo dye, Orange II (OII) decolorization occurs only during the idiophase and a Δmnp4 strain showed a drastic reduction in this decolorization. Three degradation metabolites were identified by liquid chromatography-mass spectroscopy (LC-MS), indicating both asymmetric and symmetric enzymatic cleavage of the azo-bond. In addition, the culture filtrate of Δmnp4 showed negligible values of oxidation capability of four typical VP substrates: Mn(2+), 2,6-dimethoxyphenol, phenol red, and Reactive Black 5 (RB5), compared to the wild-type strain PC9. We concluded that under Mn(2+)-deficient GP culture, VP4 (encoded by mnp4) is the main active ligninolytic enzyme able to oxidize Mn(2+) as well as high and low redox potential aromatic substrate, including dyes. Furthermore, other VPs/MnPs do not compensate for the lack of VP4 activity.


Asunto(s)
Proteínas Fúngicas/metabolismo , Manganeso/deficiencia , Peroxidasa/metabolismo , Pleurotus/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Oxidación-Reducción , Peroxidasa/química , Peroxidasa/genética , Pleurotus/genética , Pleurotus/metabolismo , Especificidad por Sustrato
18.
J Biol Chem ; 287(12): 9213-21, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22270362

RESUMEN

ß-Xylosidases are hemicellulases that hydrolyze short xylo-oligosaccharides into xylose units, thus complementing endoxylanase degradation of the hemicellulose component of lignocellulosic substrates. Here, we describe the cloning, characterization, and kinetic analysis of a glycoside hydrolase family 43 ß-xylosidase (Xyl43A) from the aerobic cellulolytic bacterium, Thermobifida fusca. Temperature and pH optima of 55-60 °C and 5.5-6, respectively, were determined. The apparent K(m) value was 0.55 mM, using p-nitrophenyl xylopyranoside as substrate, and the catalytic constant (k(cat)) was 6.72 s(-1). T. fusca Xyl43A contains a catalytic module at the N terminus and an ancillary module (termed herein as Module-A) of undefined function at the C terminus. We expressed the two recombinant modules independently in Escherichia coli and examined their remaining catalytic activity and binding properties. The separation of the two Xyl43A modules caused the complete loss of enzymatic activity, whereas potent binding to xylan was fully maintained in the catalytic module and partially in the ancillary Module-A. Nondenaturing gel electrophoresis revealed a specific noncovalent coupling of the two modules, thereby restoring enzymatic activity to 66.7% (relative to the wild-type enzyme). Module-A contributes a phenylalanine residue that functions as an essential part of the active site, and the two juxtaposed modules function as a single functional entity.


Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Xilosidasas/química , Xilosidasas/metabolismo , Actinomycetales/química , Actinomycetales/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad por Sustrato , Xilosidasas/genética
19.
Appl Environ Microbiol ; 79(7): 2405-15, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23377936

RESUMEN

Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn(2+) amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn(2+)-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn(2+)-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn(2+)-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn(2+)-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members.


Asunto(s)
Peroxidasas/genética , Peroxidasas/metabolismo , Pleurotus/enzimología , Pleurotus/genética , Compuestos Azo/metabolismo , Bencenosulfonatos/metabolismo , Biotransformación , Medios de Cultivo/química , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Manganeso/metabolismo , Familia de Multigenes
20.
Appl Environ Microbiol ; 78(15): 5341-52, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22636004

RESUMEN

Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn(2+)-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn(2+)-dependent and Mn(2+)-independent peroxidase activity under Mn(2+)-deficient culture conditions.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Marcación de Gen/métodos , Genes Fúngicos/genética , Recombinación Homóloga/genética , Peroxidasas/genética , Pleurotus/genética , Regulación Fúngica de la Expresión Génica/genética , Familia de Multigenes/genética , Interferencia de ARN , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA