Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Photosynth Res ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168914

RESUMEN

Cyanobacteria play a crucial role in global carbon and nitrogen cycles through photosynthesis, making them valuable subjects for understanding the factors influencing their light utilization efficiency. Photosynthetic microorganisms offer a promising avenue for sustainable energy conversion in the field of photovoltaics. It was demonstrated before that application of an external electric field to the microbial biofilm or cell improves electron transfer kinetics and, consequently, efficiency of power generation. We have integrated live cyanobacterial cultures into photovoltaic devices by embedding Limnospira indica PCC 8005 cyanobacteria in agar and PEDOT:PSS matrices on the surface of boron-doped diamond electrodes. We have subjected them to varying external polarizations while simultaneously measuring current response and photosynthetic performance. For the latter, we employed Pulse-Amplitude-Modulation (PAM) fluorometry as a non-invasive and real-time monitoring tool. Our study demonstrates an improved light utilization efficiency for L. indica PCC 8005 when immobilized in a conductive matrix, particularly so for low-intensity light. Simultaneously, the impact of electrical polarization as an environmental factor influencing the photosynthetic apparatus diminishes as matrix conductivity increases. This results in only a slight decrease in light utilization efficiency for the illuminated sample compared to the dark-adapted state.

2.
Nanotechnology ; 28(6): 065701, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28035093

RESUMEN

Few-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs. The FLG-DNRs show excellent FEE characteristics with a low turn-on field of 4.21 V µm-1 and a large field enhancement factor of 3480. Moreover, using FLG-DNRs as cathode markedly enhances the plasma illumination behavior of a microplasma device, viz not only the plasma current density is increased, but also the robustness of the devices is improved.

3.
Phys Chem Chem Phys ; 17(15): 9619-23, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25779759

RESUMEN

Lead phthalocyanine (PbPc) thin films of 5 and 50 nm have been deposited on hydrogen and oxygen terminated single crystal diamond (SCD) using organic molecular beam deposition. Atomic force microscopy and X-ray diffraction (XRD) studies showed that PbPc grown on the hydrogen terminated SCD forms layers with a high degree of crystallinity, dominated by the monoclinic (320) orientation parallel to the diamond surface. The oxygen terminated diamond led to a randomly oriented PbPc film. Absorption and photocurrent measurements indicated the presence of both polymorphs of PbPc, however, the ratio differed depending on the termination of the SCD. Finally, polarized Raman spectroscopy was used to determine the orientation of the molecules of the thin film. The results confirmed the random orientation on the O-terminated diamond. On SCD:H, the PbPc molecules are lying down in accordance with the XRD results.

4.
Analyst ; 139(7): 1726-31, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24527487

RESUMEN

Nanostructured boron-doped diamond has been investigated as a sensitive impedimetric electrode for the detection of immunoglobulin G (IgG). The immunosensor was constructed in a three-step process: (i) reactive ion etching of flat boron-doped diamond (BDD) interfaces to synthesize BDD nanowires (BDD NWs), (ii) electrochemical deposition of nickel nanoparticles (Ni NPs) on the BDD NWs, and (iii) immobilization of biotin-tagged anti-IgG onto the Ni NPs. Electrochemical impedance spectroscopy (EIS) was used to follow the binding of IgG at different concentrations without the use of any additional label. A detection limit of 0.3 ng mL(-1) (2 nM) with a dynamic range up to 300 ng mL(-1) (2 µM) was obtained with the interface. Moreover, the study demonstrated that this immunosensor exhibits good stability over time and allows regeneration by incubation in ethylenediaminetetraacetic acid (EDTA) aqueous solution.


Asunto(s)
Técnicas Biosensibles/métodos , Boro/química , Diamante/química , Espectroscopía Dieléctrica/métodos , Inmunoglobulina G/análisis , Nanocables/química , Animales , Anticuerpos Antiidiotipos/química , Anticuerpos Inmovilizados , Técnicas Biosensibles/instrumentación , Bovinos , Espectroscopía Dieléctrica/instrumentación , Electrodos , Límite de Detección , Microscopía Electrónica de Rastreo , Nanopartículas/química , Níquel/química , Espectroscopía de Fotoelectrones , Conejos , Propiedades de Superficie
5.
ACS Omega ; 9(30): 32949-32961, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100327

RESUMEN

We present the change of light absorption of cyanobacteria in response to externally applied electrical polarization. Specifically, we studied the relation between electrical polarization and changes in light absorbance for a biophotoelectrode assembly comprising boron-doped diamond as semiconducting electrode and live Limnospira indicaPCC 8005 trichomes embedded in either polysaccharide (agar) or conductive conjugated polymer (PEDOT-PSS) matrices. Our study involves the monitoring of cyanobacterial absorbance and the measurement of photocurrents at varying wavelengths of illumination for switched electric fields, i.e., using the bioelectrode either as an anode or as cathode. We observed changes in the absorbance characteristics, indicating a direct causal relationship between electrical polarization and absorbing properties of L. indica. Our finding opens up a potential avenue for optimization of the performance of biophotovoltaic devices through controlled polarization. Furthermore, our results provide fundamental insights into the wavelength-dependent behavior of a bio photovoltaic system using live cyanobacteria.

6.
ACS Appl Mater Interfaces ; 16(1): 1719-1726, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38154790

RESUMEN

Surface treatment is critical for homogeneous coating over a large area and high-resolution patterning of nanodiamond (ND) particles. To optimize the interaction between the surface of a substrate and the colloid of ND particles, it is essential to remove hydrocarbon contamination by surface treatment and to increase the surface energy of the substrate, hence improving the diamond film homogeneity upon its deposition. However, the impact of substrate surface treatment on the properties of coatings and patterns is not fully understood. This study explores the impact of UV-ozone, O2 plasma, and CF4 plasma treatments on the wetting properties of the fused silica glass substrate surface. We identify the optimal time interval between the treatment and subsequent ND coating/patterning processes, which were conducted using inkjet printing and ultrasonic spray coating techniques. Our results showed that UV-ozone and O2 plasma resulted in hydrophilic surfaces, while CF4 plasma treatment resulted in hydrophobic surfaces. We demonstrate the use of CF4 plasma treatment before inkjet printing to generate high-resolution patterns with dots as small as 30 µm in diameter. Ultrasonic spray coating showed homogeneous coatings after using UV-ozone and O2 plasma treatment. The findings of this study provide valuable insights into the hydrocarbon airborne contamination on cleaned surfaces over time even in clean-room environments and have a notable impact on the performance of liquid coatings and patterns. We highlight the importance of timing between the surface treatment and printing in achieving high resolution or homogeneity.

7.
Small Methods ; : e2301774, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874124

RESUMEN

Diamond electrochemistry is primarily influenced by quantities of sp3-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices.

8.
ACS Appl Mater Interfaces ; 15(33): 39915-39925, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37556596

RESUMEN

Fabrication of patterned boron-doped diamond (BDD) in an inexpensive and straightforward way is required for a variety of practical applications, including the development of BDD-based electrochemical sensors. This work describes a simplified and novel bottom-up fabrication approach for BDD-based three-electrode sensor chips utilizing direct inkjet printing of diamond nanoparticles on silicon-based substrates. The whole seeding process, accomplished by a commercial research inkjet printer with piezo-driven drop-on-demand printheads, was systematically examined. Optimized and continuous inkjet-printed features were obtained with glycerol-based diamond ink (0.4% vol/wt), silicon substrates pretreated by exposure to oxygen plasma and subsequently to air, and applying a dot density of 750 drops (volume 9 pL) per inch. Next, the dried micropatterned substrate was subjected to a chemical vapor deposition step to grow uniform thin-film BDD, which satisfied the function of both working and counter electrodes. Silver was inkjet-printed to complete the sensor chip with a reference electrode. Scanning electron micrographs showed a closed BDD layer with a typical polycrystalline structure and sharp and well-defined edges. Very good homogeneity in diamond layer composition and a high boron content (∼2 × 1021 atoms cm-3) was confirmed by Raman spectroscopy. Important electrochemical characteristics, including the width of the potential window (2.5 V) and double-layer capacitance (27 µF cm-2), were evaluated by cyclic voltammetry. Fast electron transfer kinetics was recognized for the [Ru(NH3)6]3+/2+ redox marker due to the high doping level, while somewhat hindered kinetics was observed for the surface-sensitive [Fe(CN)6]3-/4- probe. Furthermore, the ability to electrochemically detect organic compounds of different structural motifs, such as glucose, ascorbic acid, uric acid, tyrosine, and dopamine, was successfully verified and compared with commercially available screen-printed BDD electrodes. The newly developed chip-based manufacture method enables the rapid prototyping of different small-scale electrode designs and BDD microstructures, which can lead to enhanced sensor performance with capability of repeated use.

9.
J Chem Phys ; 137(4): 044702, 2012 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-22852639

RESUMEN

Interactions between ethanol-water mixtures and a hydrophobic hydrogen terminated nanocrystalline diamond surface, are investigated by sessile drop contact angle measurements. The surface free energy of the hydrophobic surface, obtained with pure liquids, differs strongly from values obtained by ethanol-water mixtures. Here, a model which explains this difference is presented. The model suggests that, due to a higher affinity of ethanol for the hydrophobic surface, when compared to water, a phase separation occurs when a mixture of both liquids is in contact with the H-terminated diamond surface. These results are supported by a computational study giving insight in the affinity and related interaction at the liquid-solid interface.


Asunto(s)
Diamante/química , Etanol/química , Hidrógeno/química , Nanopartículas/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie
10.
Materials (Basel) ; 15(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35407887

RESUMEN

Finesse coefficient is one of the most important parameters describing the properties of a resonant cavity. In this research, a mathematical investigation of the application of diamond structures in a fiber-optic Fabry-Perot measurement head to assess their impact on the finesse coefficient is proposed. We present modeled transmission functions of cavities utilizing a nitrogen-doped diamond, a boron-doped diamond, nanocrystalline diamond sheet and a silver mirror. The diamond structures were deposited using a microwave plasma-assisted chemical vapor deposition system. A SEM investigation of surface morphology was conducted. The modeling took into consideration the fiber-optic Fabry-Perot setup working in a reflective mode, with an external cavity and a light source of 1550 nm. A comparison of the mathematical investigation and experimental results is presented.

11.
ACS Appl Mater Interfaces ; 14(39): 44933-44946, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36135965

RESUMEN

Polycrystalline diamond has the potential to improve the osseointegration of orthopedic implants compared to conventional materials such as titanium. However, despite the excellent biocompatibility and superior mechanical properties, the major challenge of using diamond for implants, such as those used for hip arthroplasty, is the limitation of microwave plasma chemical vapor deposition (CVD) techniques to synthesize diamond on complex-shaped objects. Here, for the first time, we demonstrate diamond growth on titanium acetabular shells using the surface wave plasma CVD method. Polycrystalline diamond coatings were synthesized at low temperatures (∼400 °C) on three types of acetabular shells with different surface structures and porosities. We achieved the growth of diamond on highly porous surfaces designed to mimic the structure of the trabecular bone and improve osseointegration. Biocompatibility was investigated on nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) coatings terminated either with hydrogen or oxygen. To understand the role of diamond surface topology and chemistry in the attachment and proliferation of mammalian cells, we investigated the adsorption of extracellular matrix proteins and monitored the metabolic activity of fibroblasts, osteoblasts, and bone-marrow-derived mesenchymal stem cells (MSCs). The interaction of bovine serum albumin and type I collagen with the diamond surfaces was investigated by confocal fluorescence lifetime imaging microscopy (FLIM). We found that the proliferation of osteogenic cells was better on hydrogen-terminated UNCD than on the oxygen-terminated counterpart. These findings correlated with the behavior of collagen on diamond substrates observed by FLIM. Hydrogen-terminated UNCD provided better adhesion and proliferation of osteogenic cells, compared to titanium, while the growth of fibroblasts was poorest on hydrogen-terminated NCD and MSCs behaved similarly on all tested surfaces. These results open new opportunities for application of diamond coatings on orthopedic implants to further improve bone fixation and osseointegration.


Asunto(s)
Diamante , Enfermedades no Transmisibles , Adsorción , Animales , Proliferación Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Colágeno Tipo I , Diamante/química , Hidrógeno , Mamíferos , Oseointegración , Oxígeno , Albúmina Sérica Bovina , Propiedades de Superficie , Titanio/química , Titanio/farmacología
12.
Nanoscale ; 13(15): 7308-7321, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33889909

RESUMEN

We report a novel versatile method for writing charged areas on diamond nanowire (DNW) surfaces using an atomic force microscopy (AFM) tip. Transmission electron microscopy (TEM) investigations revealed the existence of abundant plate-like diamond aggregates, which were encased in layers of graphite, forming nano-sized diamond-graphite composites (DGCs) on DNW surfaces. These DGCs are the main feature, acting as charge-trapping centers and storing electrostatic charge. A hydrogenation process has been observed effectively enhancing the charge-trapping properties of these DNW materials. The effective charge trapping properties with hydrogenation are ascribed to the disintegration of the DGCs into smaller pieces, with an overall increase in the metallic nanographitic phase fractions in a dielectric diamond matrix. Moreover, the written charge on the surface can be easily modified, re-written, or completely erased, enabling application in diamond-based re-writable electronic devices. However, excessive hydrogenation degrades the charge-trapping properties, which is attributed to the etching of the DGCs from the surface. This study demonstrates the potential importance of a simple hydrogenation process in effective electrostatic charge trapping and storage for diamond related nanocarbon materials and the role of DGCs to further enhance it.

13.
Nanomaterials (Basel) ; 10(6)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471124

RESUMEN

Nanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced chemical vapor deposition. While the methane (CH4) and P concentrations are kept constant, the N2 concentration is varied from 0.2% to 2% and supplemented by H2. The composition of the gas mixture is tracked in situ by optical emission spectroscopy. Scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, and Raman spectroscopy are used to provide evidence of the changes in crystal morphology, surface roughness, microstructure, and crystalline quality of the different NCD samples. The FEE results display that the 2% N2 concentration sample had the best FEE properties, viz. the lowest turn-on field value of 14.3 V/µm and the highest current value of 2.7 µA at an applied field of 73.0 V/µm. Conductive AFM studies reveal that the 2% N2 concentration NCD sample showed more emission sites, both from the diamond grains and the grain boundaries surrounding them. While phosphorus doping increased the electrical conductivity of the diamond grains, the incorporation of N2 during growth facilitated the formation of nano-graphitic grain boundary phases that provide conducting pathways for the electrons, thereby improving the FEE properties for the 2% N2 concentrated NCD films.

14.
Nanoscale ; 12(18): 10117-10126, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32352121

RESUMEN

Direct synthesis of a nano-structured carbon hybrid consisting of vertically aligned carbon nanograsses on top of boron-doped nanocrystalline diamond is demonstrated and the carbon hybrid is further applied as an electrode material for the fabrication of supercapacitors. The hybrid film combines the dual advantages of sp2 (carbon nanograss) and sp3 (nanocrystalline diamond) bonded carbon, possessing not only the excellent electrical characteristics of sp2 carbon but also the exceptional electrochemical stability of sp3 carbon. As a result, the specific capacitance of the as-prepared hybrid material reaches up to 0.4 F cm-2, one of the highest reported in diamond-based supercapacitors. The entire electrochemical results exhibit enhanced electron transfer efficiency with remarkable stability of 95% of capacitance retention even after 10 000 cycles.

15.
J Nanosci Nanotechnol ; 9(6): 3483-6, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19504872

RESUMEN

Detecting nano-gram quantities of analyte in the liquid or gas phase is crucial for pathogen detection, antigen/DNA detection, water monitoring, electrochemical analysis, and many other bio-electrochemical applications. The quartz crystal microbalance (QCM) has become a significant sensor for both liquid and gas phase graviometry due to its high sensitivity, robustness, ease of use and simultaneous electrochemistry capabilities. One key factor plaguing the QCM in most sensor applications is the stability of the surface functionalisation. Diamond offers the most stable surface for functionalisation, the widest electrochemical window and the lowest noise floor. Unfortunately the growth of diamond on QCMs is problematic due to the low curie point of quartz, resulting in the loss of the piezoelectric properties of the QCM. In this work the replacement of the quartz with a high temperature stable piezoelectric material is proposed, and a nanocrystalline diamond coated sensor demonstrated.

16.
Materials (Basel) ; 12(13)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269665

RESUMEN

This paper reports the application of doped nanocrystalline diamond (NCD) films-nitrogen-doped NCD and boron-doped NCD-as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry-Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition system. The measurements of refractive indices of liquids were carried out in the range of 1.3 to 1.6. The results of initial investigations show that doped NCD films can be successfully used in fiber-optic sensors of refractive index providing linear work characteristics. Their application can prolong the lifespan of the measurement head and open the way to measure biomedical samples and aggressive chemicals.

17.
Nanoscale ; 11(38): 17939-17946, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31553006

RESUMEN

Supercabatteries have the characteristics of supercapacitors and batteries, namely high power and energy densities as well as long cycle life. To construct them, capacitor electrodes with wide potential windows and/or redox electrolytes are required. Herein, graphite@diamond nano-needles and an aqueous solution of Fe(CN)63-/4- are utilized as the capacitor electrode and the electrolyte, respectively. This diamond capacitor electrode has a nitrogen-doped diamond core and a nano-graphitic shell. In 0.05 M Fe(CN)63-/4- + 1.0 M Na2SO4 aqueous solution, the fabricated supercabattery has a capacitance of 66.65 mF cm-2 at a scan rate of 10 mV s-1. It is stable over 10 000 charge/discharge cycles. The symmetric supercabattery device assembled using a two-electrode system possesses energy and power densities of 10.40 W h kg-1 and 6.96 kW kg-1, respectively. These values are comparable to those of other energy storage devices. Therefore, diamond supercabatteries are promising for many industrial applications.

18.
ACS Appl Mater Interfaces ; 11(51): 48612-48623, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31794182

RESUMEN

Electron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach, envisioning a superior field electron emission (FEE) material. An innovation is described regarding the fabrication of a nanostructured carbon hybrid, resulting from the one-step growth of boron-doped nanocrystalline diamond (BNCD) and carbon nanospikes (CNSs) by a microwave plasma-enhanced chemical vapor deposition technique. Spectroscopic and microscopic tools are used to investigate the morphological, bonding, and microstructural characteristics related to the growth mechanism of these hybrids. Utilizing the benefits of both the sharp edges of the CNSs and the high stability of BNCD, promising FEE performance with a lower turn-on field of 1.3 V/µm, a higher field enhancement factor of 6780, and a stable FEE current stability lasting for 780 min is obtained. The microplasma devices utilizing these hybrids as a cathode illustrate a superior plasma illumination behavior. Such hybrid carbon nanostructures, with superb electron emission characteristics, can encourage the enlargement of several electron emission device technologies.

19.
Nanomaterials (Basel) ; 9(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635101

RESUMEN

This paper presents a plasma display device (PDD) based on laser-induced graphene nanoribbons (LIGNs), which were directly fabricated on polyimide sheets. Superior field electron emission (FEE) characteristics, viz. a low turn-on field of 0.44 V/µm and a large field enhancement factor of 4578, were achieved for the LIGNs. Utilizing LIGNs as a cathode in a PDD showed excellent plasma illumination characteristics with a prolonged plasma lifetime stability. Moreover, the LIGN cathodes were directly laser-patternable. Such superior plasma illumination performance of LIGN-based PDDs has the potential to make a significant impact on display technology.

20.
ACS Appl Mater Interfaces ; 11(28): 25388-25398, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31260239

RESUMEN

Microstructural evolution of nanocrystalline diamond (NCD) nanoneedles owing to the addition of methane and nitrogen in the reactant gases is systematically addressed. It has been determined that varying the concentration of CH4 in the CH4/H2/N2 plasma is significant to tailor the morphology and microstructure of NCD films. While NCD films grown with 1% CH4 in a CH4/H2/N2 (3%) plasma contain large diamond grains, the microstructure changed considerably for NCD films grown using 5% (or 10%) CH4, ensuing in nanosized diamond grains. For 15% CH4-grown NCD films, a well-defined nanoneedle structure evolves. These NCD nanoneedle films contain sp3 phase diamond, sheathed with sp2-bonded graphitic phases, achieving a low resistivity of 90 Ω cm and enhanced field electron emission (FEE) properties, namely, a low turn-on field of 4.3 V/µm with a high FEE current density of 3.3 mA/cm2 (at an applied field of 8.6 V/µm) and a significant field enhancement factor of 3865. Furthermore, a microplasma device utilizing NCD nanoneedle films as cathodes can trigger a gas breakdown at a low threshold field of 3600 V/cm attaining a high plasma illumination current density of 1.14 mA/cm2 at an applied voltage of 500 V, and a high plasma lifetime stability of 881 min is evidenced. The optical emission spectroscopy studies suggest that the C2, CN, and CH species in the growing plasma are the major causes for the observed microstructural evolution in the NCD films. However, the increase in substrate temperature to ∼780 °C due to the incorporation of 15% CH4 in the CH4/H2/N2 plasma is the key driver resulting in the origin of nanoneedles in NCD films. The outstanding optoelectronic characteristics of these nanoneedle films make them suitable as cathodes in high-brightness display panels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA