RESUMEN
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.
Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Metilación de ADN , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/patología , Secuencia de Aminoácidos , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Tumores Neuroectodérmicos/clasificación , Tumores Neuroectodérmicos/diagnóstico , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal , Transactivadores , Proteínas Supresoras de Tumor/genéticaRESUMEN
AIMS: Expression patterns of key proteins involved in RAS signaling and connected pathways were determined and correlated to possibly provide information for therapeutic application of RAS inhibitors in neurofibromatosis type 1 (NF1)-associated peripheral nerve sheath tumors (PNST). MATERIALS AND METHODS: Clinical variables (age, sex), histological parameters (cell density, mitoses), and expression of immunohistochemically evaluated ligand and receptor proteins (neuregulin 1 (NRG1), ErbB2, ErbB3), RAS pathway proteins (mTor, Rho, phosphorylated MEK), transcription factors (Pax7, Sox9), and proliferation marker Ki-67, were correlated in cutaneous (CNF, n = 136), diffuse (DNF, n = 123)/diffuse plexiform (DPNF, n = 113), and plexiform neurofibroma (PNF, n = 126), and in malignant PNST (MPNST, n = 22). RESULTS: In CNF, NRG1 correlated with Ki-67 and Pax7. Further, mTOR correlated with ErbB3, Sox9, Pax7, and Ki-67. In DNF/DPNF, expression of NRG1 correlated with pMEK and Pax7. mTOR correlated with pMEK, Sox9, and Pax7. Noteworthy, pMEK was weakly expressed in some DNF but not in DPNF. ErbB3 correlated with mTor and Ki-67. Furthermore, Rho correlated with Pax7 and Ki-67. In PNF, ErbB3 expression was associated with Sox9, mTOR, pMEK, and Pax7 as well as mTOR with Sox9 and Pax7, Rho with pMEK and Pax7, and pMEK with Pax7 and Sox9. In MPNST, only few correlations were observed, ErbB2 correlated with Ki-67, and Rho with pMEK. CONCLUSION: Signaling networks of the RAS pathway could be retraced by correlation analysis of protein expression in subgroups of NF1 associated benign PNST. In regard to treatment of PNST, MEK inhibitors, which are presently evaluated for PNF, may possibly also be effective to some extent in DNF.
Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibromatosis 1 , Transducción de Señal , Humanos , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Femenino , Masculino , Adulto , Transducción de Señal/fisiología , Persona de Mediana Edad , Adolescente , Neoplasias de la Vaina del Nervio/patología , Neoplasias de la Vaina del Nervio/metabolismo , Adulto Joven , Niño , Proteínas ras/metabolismo , Anciano , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , PreescolarRESUMEN
AIMS: Pituitary neuroendocrine tumour (PitNET)/adenoma classification is based on cell lineage and requires immunopositivity for adenohypophysial hormones and/or transcription factors (TFs) steroidogenic factor 1 (SF1), T-box transcription factor TBX19 (TPIT) or pituitary-specific positive transcription factor 1 (PIT1). PitNET/adenomas lacking lineage affiliation are termed 'null cell' tumours (NCTs). NCT diagnosis may be afflicted by methodological limitations and inconsistent diagnostic approaches. Previous studies have questioned the existence of true NCTs. In this study, we explore the epigenomic identities of PitNET/adenomas lacking clear TF immunopositivity. METHODS: Seventy-four hormone-negative PitNET/adenomas were immunostained and scored for SF1, TPIT and PIT1 expression. All tumours were classified as gonadotroph, corticotroph, PIT1-positive or 'null cell'. NCTs were subjected to global DNA methylation analysis. Epigenomic profiles of NCTs were compared to reference tumours using Uniform Manifold Approximation and Projection (UMAP) plotting and methylation-based classification. RESULTS: TF immunostaining revealed definite lineage identity in 59 of 74 (79.7%) hormone-negative PitNET/adenomas. Of the remaining 15 NCTs, 13 demonstrated minimal and inconclusive nuclear SF1 or TPIT expression (5 and 8, respectively). Two NCTs were entirely immunonegative. UMAP plotting and methylation-based classification demonstrated that the epigenomes of NCTs with minimal SF1 or TPIT expression were adequately affiliated with gonadotroph or corticotroph lineages, respectively. The two immunonegative NCTs were located near the corticotroph PitNET/adenomas via UMAP, whereas the methylation classifier could not match these two cases to predefined tumour classes. CONCLUSIONS: Epigenomic analyses substantiate lineage identification based on minimal TF immunopositivity in PitNET/adenomas. This strategy dramatically decreases the incidence of NCTs and further challenges the legitimacy of NCTs as a distinct PitNET/adenoma subtype. Our study may be useful for guiding diagnostic efforts and future considerations of PitNET/adenoma classification.
Asunto(s)
Adenoma , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Humanos , Epigenómica , Señales (Psicología) , Neoplasias Hipofisarias/patología , Adenoma/patología , Factores de Transcripción/genética , HormonasRESUMEN
PURPOSE: To characterize expression of factors relevant for Ras signaling and developmental factors in a large series of peripheral nerve sheath tumors (PNST) obtained from patients with neurofibromatosis type 1 (NF1). MATERIALS AND METHODS: Tissue micro-array technique was applied to study 520 PNST of 385 NF1 patients by immunohistochemistry for mTor, Rho, phosphorylated MEK, Pax7, Sox9, and periaxin expression. PNST comprised cutaneous neurofibroma (CNF) (n = 114), diffuse neurofibroma (DNF) (n = 109), diffuse plexiform neurofibroma (DPNF) (n = 108), plexiform neurofibroma (PNF) (n = 110), and malignant PNST (MPNST) (n = 22). RESULTS: All proteins examined showed highest expression levels/highest frequency of expression in MPNST. Benign PNF with potential for malignant dedifferentiation expressed mTor, phosphorylated MEK, Sox9, and periaxin significantly higher/more frequently than other benign neurofibroma subtypes. CONCLUSION: In NF1-associated PNST, expression of proteins involved in Ras-signaling and development is upregulated not only in MPNST, but also in benign PNF with the potential for malignant dedifferentiation. The differences in protein expression may provide clues for understanding the therapeutic effects of substances applied for reduction of PNST in NF1.
Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibroma Plexiforme , Neurofibroma , Neurofibromatosis 1 , Neurofibrosarcoma , Humanos , Neurofibromatosis 1/patología , Neurofibroma Plexiforme/patología , Neoplasias de la Vaina del Nervio/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismoRESUMEN
Biological subtypes of ependymoma (EPN) have been introduced by the recent WHO classification and appear to have great impact on the clinical course, but have not yet found their way into clinical risk stratification. Further, the overall unfavorable prognosis underlines the fact that current therapeutic strategies need further evaluation for improvement. To date, there is no international consensus regarding first-line treatment for children with intracranial EPN. Extent of resection is known to be the most important clinical risk factor, leading to the consensus that consequent evaluation for re-surgery of postoperative residual tumor needs to have highest priority. Furthermore, efficacy of local irradiation is unquestioned and recommended for patients aged>1 year. In contrast, efficacy of chemotherapy is still under discussion. The European trial SIOP Ependymoma II aims at evaluating efficacy of different chemotherapy elements, leading to the recommendation to include German patients. The BIOMECA study, as biological accompanying study, aims at identifying new prognostic parameters. These results might help to develop targeted therapies for unfavorable biological subtypes. For patient who are not qualified for inclusion into the interventional strata, the HIT-MED Guidance 5.2 provides specific recommendations. This article is meant as an overview of national guidelines regarding diagnostics and treatment as well as of treatment according to the SIOP Ependymoma II trial protocol.
Asunto(s)
Neoplasias Encefálicas , Ependimoma , Niño , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Pronóstico , Terapia Combinada , Factores de Riesgo , Ependimoma/diagnóstico , Ependimoma/terapia , Ependimoma/patologíaRESUMEN
Astrocytes are increasingly being recognized as contributors to physiological brain function and behavior. Astrocytes engage in glia-synaptic interactions through peripheral astrocyte processes, thus modulating synaptic signaling, for example, by handling glutamate removal from the synaptic cleft and (re)provision to axonal terminals. Peripheral astrocyte processes are ultrafine membrane protrusions rich in the membrane-to-actin cytoskeleton linker Ezrin, an essential component of in vitro filopodia formation and in vivo peripheral astrocyte process motility. Consequently, it has been postulated that Ezrin significantly contributes to neurodevelopment as well as astrocyte functions within the adult brain. However, while Ezrin has been studied in vitro within cultured primary astrocytes, in vivo studies on the role of Ezrin in astrocytes remain to be conducted and consequences of its depletion to be studied. Here, we investigated consequences of Ezrin deletion in the mouse brain starting from early neuronal specification. While Ezrin knockout did not impact prenatal cerebral cortex development, behavioral phenotyping depicted reduced exploratory behavior. Starting with postnatal appearance of glia cells, Ezrin was verified to remain predominantly expressed in astrocytes. Proteome analysis of Ezrin deficient astrocytes revealed alterations in glutamate and ion homeostasis, metabolism and cell morphology - important processes for synaptic signal transmission. Notably, Ezrin deletion in astrocytes provoked (GFAP) glial fibrillary acidic protein upregulation - a marker of astrocyte activation and reactive astrogliosis. However, this spontaneous, reactive astrogliosis exhibited proteome changes distinct from ischemic-induced reactive astrogliosis. Moreover, in experimental ischemic stroke, Ezrin knockout mice displayed reduced infarct volume, indicating a protective effect of the Ezrin deletion-induced changes and astrogliosis.
Asunto(s)
Astrocitos , Gliosis , Animales , Astrocitos/metabolismo , Proteínas del Citoesqueleto , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Ácido Glutámico/metabolismo , Ratones , Ratones Noqueados , Fenotipo , Embarazo , Proteoma/metabolismo , Regulación hacia ArribaRESUMEN
PURPOSE: To evaluate the clinical impact of isolated spread of medulloblastoma cells into cerebrospinal fluid without additional macroscopic metastases (M1-only). METHODS: The HIT-MED database was searched for pediatric patients with M1-only medulloblastoma diagnosed from 2000 to 2019. Corresponding clinical and molecular data was evaluated. Treatment was stratified by age and changed over time for older patients. RESULTS: 70 patients with centrally reviewed M1-only disease were identified. Clinical data was available for all and molecular data for 45/70 cases. 91% were non-WNT/non-SHH medulloblastoma (Grp3/4). 5-year PFS for 52 patients ≥ 4 years was 59.4 (± 7.1) %, receiving either upfront craniospinal irradiation (CSI) or SKK-sandwich chemotherapy (CT). Outcomes did not differ between these strategies (5-year PFS: CSI 61.7 ± 9.9%, SKK-CT 56.7 ± 6.1%). For patients < 4 years (n = 18), 5-year PFS was 50.0 (± 13.2) %. M1-persistence occurred exclusively using postoperative CT and was a strong negative predictive factor (pPFS/OS < 0.01). Patients with additional clinical or molecular high-risk (HR) characteristics had worse outcomes (5-year PFS 42.7 ± 10.6% vs. 64.0 ± 7.0%, p = 0.03). In n = 22 patients ≥ 4 years with full molecular information and without additional HR characteristics, risk classification by molecular subtyping had an effect on 5-year PFS (HR 16.7 ± 15.2%, SR 77.8 ± 13.9%; p = 0.01). CONCLUSIONS: Our results confirm that M1-only is a high-risk condition, and further underline the importance of CSF staging. Specific risk stratification of affected patients needs attention in future discussions for trials and treatment recommendations. Future patients without contraindications may benefit from upfront CSI by sparing risks related to higher cumulative CT applied in sandwich regimen.
Asunto(s)
Neoplasias Cerebelosas , Irradiación Craneoespinal , Meduloblastoma , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/terapia , Niño , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/terapia , Factores de RiesgoRESUMEN
Vasculitides can present with various clinical signs and symptoms. Besides disease-specific organ manifestations, the skin, peripheral nerves and musculature are frequently involved. The combination of elevated serological inflammatory markers, vasculitic skin lesions, active polyneuropathy and immobilizing myalgia of the lower limb musculature is highly suspicious for muscular polyarteritis nodosa (mPAN). Based on the case of a 63-year-old female patient with a vasculitic syndrome confined to the lower limb due to mPAN, important differential diagnoses of the these disease manifestations are discussed. Magnetic resonance imaging of the affected muscles and subsequent muscle biopsy (including skin and fascia) provide the relevant diagnostic data.
Asunto(s)
Extremidad Inferior , Humanos , Persona de Mediana Edad , Diagnóstico DiferencialRESUMEN
AMPK (adenosine monophosphate-activated protein kinase) is phosphorylated (AMPK-P) in response to low energy through allosteric activation by Adenosine mono- or diphosphate (AMP/ADP). Folliculin (FLCN) and the FLCN-interacting proteins 1 and 2 (FNIP1, 2) modulate AMPK. FNIP1 deficiency patients have a AMPK-P gain of function phenotype with hypertrophic cardiomyopathy, Wolff-Parkinson-White pre-excitation syndrome, myopathy of skeletal muscles and combined immunodeficiency.
Asunto(s)
Cardiomiopatías , Proteínas Portadoras , Genes Recesivos , Síndromes de Inmunodeficiencia , Mutación , Síndromes de Preexcitación , Cardiomiopatías/genética , Cardiomiopatías/inmunología , Cardiomiopatías/patología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Femenino , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/patología , Masculino , Síndromes de Preexcitación/genética , Síndromes de Preexcitación/inmunología , Síndromes de Preexcitación/patologíaRESUMEN
Presenilin-1 (PSEN1) mutations cause familial Alzheimer's disease (FAD) characterized by early age of onset (AoO). Examination of a large kindred harboring the PSEN1-E280A mutation reveals a range of AoO spanning 30 years. The pathophysiological drivers and clinical impact of AoO variation in this population are unknown. We examined brains of 23 patients focusing on generation and deposition of beta-amyloid (Aß) and Tau pathology profile. In 14 patients distributed at the extremes of AoO, we performed whole-exome capture to identify genotype-phenotype correlations. We also studied kinome activity, proteasome activity, and protein polyubiquitination in brain tissue, associating it with Tau phosphorylation profiles. PSEN1-E280A patients showed a bimodal distribution for AoO. Besides AoO, there were no clinical differences between analyzed groups. Despite the effect of mutant PSEN1 on production of Aß, there were no relevant differences between groups in generation and deposition of Aß. However, differences were found in hyperphosphorylated Tau (pTau) pathology, where early onset patients showed severe pathology with diffuse aggregation pattern associated with increased activation of stress kinases. In contrast, late-onset patients showed lesser pTau pathology and a distinctive kinase activity. Furthermore, we identified new protective genetic variants affecting ubiquitin-proteasome function in early onset patients, resulting in higher ubiquitin-dependent degradation of differentially phosphorylated Tau. In PSEN1-E280A carriers, altered γ-secretase activity and resulting Aß accumulation are prerequisites for early AoO. However, Tau hyperphosphorylation pattern, and its degradation by the proteasome, drastically influences disease onset in individuals with otherwise similar Aß pathology, hinting toward a multifactorial model of disease for FAD. In sporadic AD (SAD), a wide range of heterogeneity, also influenced by Tau pathology, has been identified. Thus, Tau-induced heterogeneity is a common feature in both AD variants, suggesting that a multi-target therapeutic approach should be used to treat AD.
Asunto(s)
Edad de Inicio , Enfermedad de Alzheimer/patología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Femenino , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Fenotipo , Fosforilación , Presenilina-1/genética , Complejo de la Endopetidasa Proteasomal , Ubiquitinación , Secuenciación del Exoma , Proteínas tau/genéticaRESUMEN
PURPOSE: To analyze the co-expression of the intermediate filaments GFAP and cytokeratin in 326 pituitary adenomas with regard to the distribution pattern, the subtype of the adenoma and clinical prognostic data. METHODS: Tissue from 326 pituitary adenomas and 13 normal anterior pituitaries collected in the Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, between 2006 and 2009 was investigated by immunohistochemistry, immunofluorescence and electron microscopy. RESULTS: Co-expression of intermediate filaments GFAP and cytokeratin was associated with hormone expression in 62/278 cases (22%), but only found in 2/48 (4%) of null cell adenomas (p < 0.01). Simultaneous co-expression of GFAP and cytokeratin in the same cells was demonstrated in 26 out of 326 pituitary adenomas and in all 13 pituitaries. In pituitary intermediate filaments were demonstrated in a larger area of the cytoplasm than in adenoma (p < 0.01), however, overlapping expression was seen in 2.6% of the total area in both, pituitary and adenoma. Congenially, cells with overlapping expression were found near vessels and in follicles. Furthermore, adenomas with cellular co-expression of GFAP and cytokeratin were associated with a lower recurrence rate (7.7%) compared to adenomas without co-expression of intermediate filaments (17.8%). CONCLUSIONS: Cellular co-expression of the intermediate filaments GFAP and cytokeratin in pituitary adenomas and the pituitary was demonstrated and shown to be associated with hormone expression and low recurrence rate. The results are discussed with regard to the biology of folliculostellate cells, neural transformation and tumor stem cells. This study may complement the understanding of pituitary adenoma biology.
Asunto(s)
Proteína Ácida Fibrilar de la Glía/metabolismo , Queratinas/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/fisiología , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Neoplasias Hipofisarias/metabolismoRESUMEN
PURPOSE: Pituitary adenoma (PA) constitutes the third most common intracranial neoplasm. The mostly benign endocrine lesions express no hormone (null cell PA) or the pituitary hormone(s) of the cell lineage of origin. In 0.5-1.5% of surgical specimens and in up to 10% of autopsy cases, two or three seemingly separate PA may coincide. These multiple adenomas may express different hormones, but whether or not expression of lineage-restricted transcription factors and molecular features are distinct within multiple lesions remains unknown. METHODS: Searching the data bank of the German Pituitary Tumor Registry 12 double pituitary adenomas with diverse lineage were identified among 3654 adenomas and 6 hypophyseal carcinomas diagnosed between 2012 and 2020. The double adenomas were investigated immunohistochemically for expression of hormones and lineage markers. In addition, chromosomal gains and losses as well as global DNA methylation profiles were assessed, whenever sufficient material was available (n = 8 PA). RESULTS: In accordance with the literature, combinations of GH/prolactin/TSH-FSH/LH adenoma (4/12), GH/prolactin/TSH-ACTH adenoma (3/12), and ACTH-FSH/LH adenoma (3/12) were observed. Further, two out of 12 cases showed a combination of a GH/prolactin/TSH adenoma with a null-cell adenoma. Different expression pattern of hormones were confirmed by different expression of transcription factors in 11/12 patients. Finally, multiple lesions that were molecularly analysed in 4 patients displayed distinct copy number changes and global methylation pattern. CONCLUSION: Our data confirm and extend the knowledge on multiple PA and suggest that such lesions may origin from distinct cell types.
Asunto(s)
Adenoma , Neoplasias Hipofisarias , Adenoma/genética , Variaciones en el Número de Copia de ADN , Epigénesis Genética/genética , Humanos , Hipófisis , Neoplasias Hipofisarias/genéticaRESUMEN
We coincidently detected an atypical deletion of at least 1.3-Mb, encompassing the NF1 tumor suppressor gene and several adjacent genes at an apparent heterozygous level in the blood of a 65-year-old female patient. She had multiple subcutaneous tumors that appeared with a certain similarity of subcutaneous neurofibromas, which, however, was revealed as lipomas by histological examination. Comprehensive and exhaustive clinical and radiological examinations did not detect any neurofibromatosis type 1-related clinical symptoms in the patient. Multiplex ligation-dependent probe amplification detected no or only very low level of the 1.3-Mb NF1 deletion in six lipomas and two skin biopsies. Digital polymerase chain reaction estimated the proportion of cells carrying a heterozygous NF1 deletion at 87% in the blood, and 8%, 10%, 13%, 17%, and 20%, respectively, in the five lipomas investigated by this method, confirming our hypothesis of mosaicism. Our findings suggest that de novo cases of genetic disease are potentially mosaic regardless of finding the mutation at an apparently heterozygous level in the blood and that the possibility of mosaicism should be considered in genotype-phenotype studies and genetic counseling.
Asunto(s)
Eliminación de Gen , Mosaicismo , Neurofibromatosis 1/genética , Anciano , Femenino , Genes de Neurofibromatosis 1 , Heterocigoto , Humanos , FenotipoRESUMEN
Schwannomatosis is the third form of neurofibromatosis and characterized by the occurrence of multiple schwannomas. The most prominent symptom is chronic pain. We aimed to test whether pain in schwannomatosis might be caused by small-fiber neuropathy. Twenty patients with schwannomatosis underwent neurological examination and nerve conduction studies. Levels of pain perception as well as anxiety and depression were assessed by established questionnaires. Quantitative sensory testing (QST) and laser-evoked potentials (LEP) were performed on patients and controls. Whole-body magnetic resonance imaging (wbMRI) and magnetic resonance neurography (MRN) were performed to quantify tumors and fascicular nerve lesions; skin biopsies were performed to determine intra-epidermal nerve fiber density (IENFD). All patients suffered from chronic pain without further neurological deficits. The questionnaires indicated neuropathic symptoms with significant impact on quality of life. Peripheral nerve tumors were detected in all patients by wbMRI. MRN showed additional multiple fascicular nerve lesions in 16/18 patients. LEP showed significant faster latencies compared to normal controls. Finally, IENFD was significantly reduced in 13/14 patients. Our study therefore indicates the presence of small-fiber neuropathy, predominantly of unmyelinated C-fibers. Fascicular nerve lesions are characteristic disease features that are associated with faster LEP latencies and decreased IENFD. Together these methods may facilitate differential diagnosis of schwannomatosis.
Asunto(s)
Fibras Nerviosas/patología , Neoplasias del Sistema Nervioso/etiología , Neuralgia/patología , Neurilemoma/complicaciones , Neurofibromatosis/complicaciones , Neoplasias Cutáneas/complicaciones , Adulto , Anciano , Dolor Crónico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Neoplasias del Sistema Nervioso/diagnóstico por imagen , Neuralgia/etiología , Neoplasias del Sistema Nervioso Periférico/diagnóstico por imagen , Neoplasias del Sistema Nervioso Periférico/etiología , Factores de Transcripción/genética , Imagen de Cuerpo EnteroRESUMEN
Schwannomatosis and neurofibromatosis type 2 (NF2) are both characterized by the development of multiple schwannomas but represent different genetic entities. Whereas NF2 is caused by mutations of the NF2 gene, schwannomatosis is associated with germline mutations of SMARCB1 or LZTR1. Here, we studied 15 sporadic patients with multiple non-intradermal schwannomas, but lacking vestibular schwannomas and ophthalmological abnormalities, who fulfilled the clinical diagnostic criteria for schwannomatosis. None of them harboured germline NF2 or SMARCB1 mutations as determined by the analysis of blood samples but seven had germline LZTR1 variants predicted to be pathogenic. At least two independent schwannomas from each patient were subjected to NF2 mutation testing. In five of the 15 patients, identical somatic NF2 mutations were identified (33%). If only those patients without germline LZTR1 variants are considered (n = 8), three of them (37.5%) had mosaic NF2 as concluded from identical NF2 mutations identified in independent schwannomas from the same patient. These findings imply that a sizeable proportion of patients who fulfil the diagnostic criteria for schwannomatosis, are actually examples of mosaic NF2. Hence, the molecular characterization of tumours in patients with a clinical diagnosis of schwannomatosis is very important. Remarkably, two of the patients with germline LZTR1 variants also had identical NF2 mutations in independent schwannomas from each patient which renders differential diagnosis of LZTR1-associated schwannomatosis versus mosaic NF2 in these patients very difficult.
Asunto(s)
Genotipo , Mutación de Línea Germinal , Neurilemoma/genética , Neurofibromatosis/genética , Neurofibromatosis 2/genética , Neurofibrosarcoma/genética , Neoplasias Cutáneas/genética , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neurilemoma/patología , Neurofibromatosis/patología , Neurofibromatosis 2/patología , Neurofibrosarcoma/patología , Proteína SMARCB1/genética , Neoplasias Cutáneas/patología , Factores de Transcripción/genéticaRESUMEN
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive neoplasms that commonly occur in patients with neurofibromatosis type 1 (NF1). Effective chemotherapy is not available. To characterize a therapeutic target for treatment, we investigated the role of cellular retinoic acid binding protein 2 (CRABP2) in MPNST in vitro. CRABP2 is a transcriptional co-activator of retinoic acid signaling. Although overexpression of CRABP2 is described in several cancers, it has not yet been studied in MPNSTs. We investigated CRABP2 expression in cultured Schwann cells and formalin-fixed, paraffin-embedded specimens of human peripheral nerve sheath tumors. A transient knockdown of CRABP2 was established in human NF1-associated MPNST cell lines (S462, T265, NSF1), and functional effects on viability, proliferation, apoptosis, and cytotoxicity were monitored. Finally, a 45-pathway reporter assay was performed in knockdown cells. Expression of CRABP2 was found in epithelium, fibroblasts, and tumor Schwann cells of skin, neurofibromas, and MPNSTs. In contrast, normal skin Schwann cells (NF1+/-, NF1-/-) did not express CRABP2. In the absence of retinoic acid, MPNST cells depleted of CRABP2 had reduced viability and proliferation, induction of apoptosis and cytotoxicity, and up-regulation of the type 1 interferon pathway. These data suggest a retinoic acid-independent, non-tumor suppressor role of CRABP2 for the survival of MPNST cells in vitro. Targeting CRABP2 overexpression may represent a unique approach for the treatment of human MPNSTs.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Vaina del Nervio/genética , Neurilemoma/genética , Neurofibroma/genética , Neurofibromatosis 1/genética , Receptores de Ácido Retinoico/metabolismo , Apoptosis , Carcinogénesis , Proliferación Celular , Supervivencia Celular , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Humanos , Neoplasias de la Vaina del Nervio/metabolismo , Neoplasias de la Vaina del Nervio/patología , Neurilemoma/metabolismo , Neurilemoma/patología , Neurofibroma/metabolismo , Neurofibroma/patología , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Receptores de Ácido Retinoico/genética , Células de Schwann/metabolismo , Células de Schwann/patología , Transducción de Señal , Tretinoina/metabolismo , Regulación hacia ArribaRESUMEN
Extraventricular neurocytoma (EVN) is a rare primary brain tumor occurring in brain parenchyma outside the ventricular system. Histopathological characteristics resemble those of central neurocytoma but exhibit a wider morphologic spectrum. Accurate diagnosis of these histologically heterogeneous tumors is often challenging because of the overlapping morphological features and the lack of defining molecular markers. Here, we explored the molecular landscape of 40 tumors diagnosed histologically as EVN by investigating copy number profiles and DNA methylation array data. DNA methylation profiles were compared with those of relevant differential diagnoses of EVN and with a broader spectrum of diverse brain tumor entities. Based on this, our tumor cohort segregated into different groups. While a large fraction (n = 22) formed a separate epigenetic group clearly distinct from established DNA methylation profiles of other entities, a subset (n = 14) of histologically diagnosed EVN grouped with clusters of other defined entities. Three cases formed a small group close to but separated from the epigenetically distinct EVN cases, and one sample clustered with non-neoplastic brain tissue. Four additional samples originally diagnosed otherwise were found to molecularly resemble EVN. Thus, our results highlight a distinct DNA methylation pattern for the majority of tumors diagnosed as EVN, but also indicate that approximately one third of morphological diagnoses of EVN epigenetically correspond to other brain tumor entities. Copy number analysis and confirmation through RNA sequencing revealed FGFR1-TACC1 fusion as a distinctive, recurrent feature within the EVN methylation group (60%), in addition to a small number of other FGFR rearrangements (13%). In conclusion, our data demonstrate a specific epigenetic signature of EVN suitable for characterization of these tumors as a molecularly distinct entity, and reveal a high frequency of potentially druggable FGFR pathway activation in this tumor group.
Asunto(s)
Neoplasias Encefálicas/genética , Proteínas Fetales/genética , Proteínas Asociadas a Microtúbulos/genética , Neurocitoma/genética , Proteínas Nucleares/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Metilación de ADN/genética , Femenino , Proteínas Fetales/metabolismo , Histonas/genética , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Estimación de Kaplan-Meier , Antígeno Ki-67/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Estudios Retrospectivos , TranscriptomaRESUMEN
Mucolipidosis II (MLII) is a severe systemic genetic disorder caused by defects in mannose 6-phosphate-dependent targeting of multiple lysosomal hydrolases and subsequent lysosomal accumulation of non-degraded material. MLII patients exhibit marked facial coarseness and gingival overgrowth soon after birth, accompanied with delayed tooth eruption and dental infections. To examine the pathomechanisms of early craniofacial and dental abnormalities, we analyzed mice with an MLII patient mutation that mimic the clinical and biochemical symptoms of MLII patients. The mouse data were compared with clinical and histological data of gingiva and teeth from MLII patients. Here, we report that progressive thickening and porosity of calvarial and mandibular bones, accompanied by elevated bone loss due to 2-fold higher number of osteoclasts cause the characteristic craniofacial phenotype in MLII. The analysis of postnatal tooth development by microcomputed tomography imaging and histology revealed normal dentin and enamel formation, and increased cementum thickness accompanied with accumulation of storage material in cementoblasts of MLII mice. Massive accumulation of storage material in subepithelial cells as well as disorganization of collagen fibrils led to gingival hypertrophy. Electron and immunofluorescence microscopy, together with (35)S-sulfate incorporation experiments revealed the accumulation of non-degraded material, non-esterified cholesterol and glycosaminoglycans in gingival fibroblasts, which was accompanied by missorting of various lysosomal proteins (α-fucosidase 1, cathepsin L and Z, Npc2, α-l-iduronidase). Our study shows that MLII mice closely mimic the craniofacial and dental phenotype of MLII patients and reveals the critical role of mannose 6-phosphate-dependent targeting of lysosomal proteins for alveolar bone, cementum and gingiva homeostasis.
Asunto(s)
Huesos Faciales/crecimiento & desarrollo , Lisosomas/enzimología , Manosafosfatos/metabolismo , Mucolipidosis/metabolismo , Odontogénesis/fisiología , Cráneo/crecimiento & desarrollo , Animales , Desarrollo Óseo/fisiología , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Encía/metabolismo , Humanos , Lactante , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Mucolipidosis/genética , Mucolipidosis/patología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genéticaRESUMEN
OBJECTIVE: Cerebral small vessel disease (cSVD) is a heterogeneous group of disorders. Screening of known cSVD genes identifies the causative mutation in <15% of familial cSVD cases. We sought to identify novel causes of cSVD. METHODS: We used linkage analysis and exome sequencing to identify the causal mutation in a French cSVD family. The identified candidate gene was then screened in 202 cSVD unrelated probands, including 1 proband from the first reported pontine autosomal dominant microangiopathy with leukoencephalopathy (PADMAL) family. Sanger sequencing was used to confirm variants in all mutated probands and analyze their segregation in probands' relatives. Mutation consequences were assessed with luciferase reporter assays and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: A candidate heterozygous variant located in a predicted miR-29 microRNA binding site, within the 3' untranslated region of COL4A1, was identified in the large French cSVD family. Five additional unrelated probands, including the PADMAL proband, harbored heterozygous variants in this microRNA binding site. Variants cosegregated with the affected phenotype, and cumulative logarithm of odds score reached 6.03, establishing linkage to this locus. A highly significant difference was observed when comparing the number of variants within this binding site in cases and controls (p = 1.77 × 10E-12). RT-qPCR analyses of patients' primary fibroblasts and luciferase reporter assays strongly favor an upregulation of COL4A1 mediated by disruption of miR-29 binding to its target site. Magnetic resonance imaging features were characterized by the presence of multiple pontine infarcts in all symptomatic mutation carriers. INTERPRETATION: Mutations upregulating COL4A1 expression lead to PADMAL, a severe early onset ischemic cSVD, distinct from the various phenotypes associated with COL4A1 missense glycine mutations. Ann Neurol 2016;80:741-753.