Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38935320

RESUMEN

PURPOSE OF REVIEW: Although the mucosal barrier serves as a primary interface between the environment and host, little is known about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation, and/or neoplasia development. RECENT FINDINGS: Studies on acute superficial lesions have been sparse in the past year, with more focus given to novel mechanisms of mucosal protection, and the way in which mature epithelial cells or committed stem cells dedifferentiate, reprogram, proliferate, and then regenerate the gastroduodenal mucosa after injury. For this, adenoviral therapy showed organ specific targeting with mRNA and protein expression of effectors to protect against mucosal injury and ulceration. A large database of plant-based agents known to protect against injury and ulceration was published, along with studies using plant-based compounds delivered with alginates, polysaccharide/gel floating rafts, or incorporated into nanoparticles or green carbon dots to improve targeting and retention at the ulcerated lesion. With RNA technology developing rapidly, particularly single-cell RNA sequencing, important and novel data was forthcoming on mucosal regeneration. In particular, the role of interleukin-17 hub proteins in mucosal healing was highlighted. The presence and role of injury reserve cells was determined, as was the composition of ligand gradients for cell differentiation in both stomach and duodenum. The role of amphiregulin in parietal cell differentiation from lineage-restricted stem cells and the Yap1 gene signature in metaplasia vs. healing ulcers were of particular importance. Additionally, studies unveiled the important role of mesenchymal stromal cells in differentiation and repair mechanisms, in Muse cells as an exciting new therapy for mucosal repair after injury, and the role of sympathetic neurons in activating the immune system to regulate mucosal repair mechanisms. SUMMARY: Recent studies highlight novel mechanisms that promote mucosal regeneration after injury of the gastroduodenal mucosa.

2.
Curr Opin Gastroenterol ; 39(6): 512-516, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678191

RESUMEN

PURPOSE OF REVIEW: Although the mucosal barrier serves as a primary interface between the environment and host, little is known about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation, and/or neoplasia development. RECENT FINDINGS: Recent studies on acute superficial lesions have focused on calcium signaling and focal adhesion kinase, which regulate cell migration and controlled matrix adhesion during restitution. Microfluidic organ-on-a-chip and gut-on-a-chip models continued in development to support reductionist studies of epithelial-bacterial and/or epithelial-immune cell interactions during mucosal barrier disruption. In fact, these models may allow personalized medicine studies in the future using patient-derived cells to evaluate injury and repair mechanisms. Work done in the past year evaluated the safety and efficacy of acid blocking drugs on ulcer healing, with new animal studies providing evidence that each drug affects the microbiome in a different way that can be correlated with its efficacy in ulcer healing. Lastly, work to understand the way in which mature epithelial cells or committed stem cells dedifferentiate, reprogram, proliferate, and then regenerate the gastroduodenal mucosa after injury was a major focus of studies in the past year. SUMMARY: Recent studies highlight novel mechanisms that promote restitution and mucosal regeneration after injury of the gastroduodenal mucosa.


Asunto(s)
Mucosa Intestinal , Úlcera , Animales , Humanos , Mucosa Intestinal/patología , Úlcera/patología , Células Epiteliales/patología
3.
Proc Natl Acad Sci U S A ; 117(36): 22080-22089, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32820071

RESUMEN

Nonshivering thermogenesis occurs in brown adipose tissue to generate heat in response to cold ambient temperatures. Thioesterase superfamily member 1 (Them1) is transcriptionally up-regulated in brown adipose tissue upon exposure to the cold and suppresses thermogenesis in order to conserve energy reserves. It hydrolyzes long-chain fatty acyl-CoAs that are derived from lipid droplets, preventing their use as fuel for thermogenesis. In addition to its enzymatic domains, Them1 contains a C-terminal StAR-related lipid transfer (START) domain with unknown ligand or function. By complementary biophysical approaches, we show that the START domain binds to long-chain fatty acids, products of Them1's enzymatic reaction, as well as lysophosphatidylcholine (LPC), lipids shown to activate thermogenesis in brown adipocytes. Certain fatty acids stabilize the START domain and allosterically enhance Them1 catalysis of acyl-CoA, whereas 18:1 LPC destabilizes and inhibits activity, which we verify in cell culture. Additionally, we demonstrate that the START domain functions to localize Them1 near lipid droplets. These findings define the role of the START domain as a lipid sensor that allosterically regulates Them1 activity and spatially localizes it in proximity to the lipid droplet.


Asunto(s)
Ácidos Grasos/metabolismo , Lisofosfatidilcolinas/metabolismo , Palmitoil-CoA Hidrolasa/química , Palmitoil-CoA Hidrolasa/metabolismo , Acilcoenzima A/metabolismo , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Pardo/metabolismo , Regulación Alostérica , Ácidos Grasos/química , Humanos , Cinética , Gotas Lipídicas/enzimología , Gotas Lipídicas/metabolismo , Lisofosfatidilcolinas/química , Palmitoil-CoA Hidrolasa/genética , Dominios Proteicos
4.
Curr Opin Gastroenterol ; 38(6): 607-612, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219128

RESUMEN

PURPOSE OF REVIEW: Although the mucosal barrier serves as a primary interface between the environment and host, little is understood about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation and/or neoplasia development. RECENT FINDINGS: Recent studies have focused on focal adhesion kinase, which regulates controlled matrix adhesion during restitution after superficial injury. Actin polymerization regulates cell migration and the importance of actin-related proteins was also highlighted. Work on SARS-CoV-2 infection lent important new insights on gastroduodenal mucosal injury in patients with Covid-19 infection and work done with organoids and intestine-on-a-chip contributed new understanding about how coronaviruses infect gastrointestinal tissues and its resulting barrier dysfunction. A novel risk stratification paradigm was proposed to assist with decision making about repeat endoscopy for patients with gastric or duodenal ulcers and new therapeutic options were studied for ulcer disease. Lastly, work to support the mechanism of metaplasia development after deep injury and parietal cell loss was provided using novel transgenic mouse models. SUMMARY: Recent studies highlight novel molecular targets to promote mucosal healing after injury of the gastroduodenal mucosa.


Asunto(s)
COVID-19 , Úlcera Péptica , Actinas/metabolismo , Animales , Mucosa Gástrica/metabolismo , Humanos , Ratones , SARS-CoV-2
5.
Curr Opin Gastroenterol ; 37(6): 609-614, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475337

RESUMEN

PURPOSE OF REVIEW: The mucosal barrier serves as a primary interface between the environment and host. In daily life, superficial injury to the gastric or duodenal mucosa occurs regularly but heals rapidly by a process called 'restitution'. Persistent injury to the gastroduodenal mucosa also occurs but initiates a regenerative lesion with specific wound healing mechanisms that attempt to repair barrier function. If not healed, these lesions can be the site of neoplasia development in a chronic inflammatory setting. This review summarizes the past year of advances in understanding mucosal repair in the gastroduodenal mucosa, which occurs as a defense mechanism against injury. RECENT FINDINGS: Organoids are an emerging new tool that allows for the correlation of in vivo and in vitro models; organoids represent an important reductionist model to probe specific aspects of injury and repair mechanisms that are limited to epithelial cells. Additionally, proof-of-concept studies show that machine learning algorithms may ultimately assist with identifying novel, targetable pathways to pursue in therapeutic interventions. Gut-on-chip technology and single cell RNA-sequencing contributed to new understanding of gastroduodenal regenerative lesions after injury by identifying networks and interactions that are involved in the repair process. SUMMARY: Recent updates provide new possibilities for identifying novel molecular targets for the treatment of acute and superficial mucosal injury, mucosal regeneration, and regenerative lesions in the gastrointestinal tract.


Asunto(s)
Duodeno , Mucosa Intestinal , Mucosa Gástrica , Humanos , Estómago
6.
Lab Invest ; 99(12): 1887-1905, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31399638

RESUMEN

Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide and is strongly associated with chronic Helicobacter pylori (Hp) infection. The ability of Hp to closely adhere to the gastric surface protective mucous layer containing mucins (MUC in humans and Muc in animals), primarily Muc5ac, is integral in the stepwise pathogenesis from gastritis to cancer. To probe the role of Muc5ac in Hp-induced gastric pathology, Muc5ac-/- and Muc5ac+/+ (WT) mice were experimentally infected with Hp Sydney strain (SS1). At 16 weeks and 32 weeks post infection (wpi), groups of mice were euthanized and evaluated for the following: gastric histopathological parameters, immunohistochemical expression of mucins (Muc5ac, Muc1, Muc2), Trefoil factor family proteins (Tff1 and Tff2), Griffonia (Bandeiraea) simplicifolia lectin II (GSL II) (mucous metaplasia marker) and Clusterin (Spasmolytic Polypeptide Expressing Metaplasia (SPEM) marker), Hp colonization density by qPCR and gastric cytokine mRNA levels. Our results demonstrate that Muc5ac-/- mice developed spontaneous antro-pyloric proliferation, adenomas and in one case with neuroendocrine differentiation; these findings were independent of Hp infection along with strong expression levels of Tff1, Tff2 and Muc1. Hp-infected Muc5ac-/- mice had significantly lowered gastric corpus mucous metaplasia at 16 wpi and 32 wpi (P = 0.0057 and P = 0.0016, respectively), with a slight reduction in overall gastric corpus pathology. GSII-positive mucous neck cells were decreased in Hp-infected Muc5ac-/- mice compared to WT mice and clusterin positivity was noted within metaplastic glands in both genotypes following Hp infection. Additionally, Hp colonization densities were significantly higher in Muc5ac-/- mice compared to WT at 16 wpi in both sexes (P = 0.05) along with a significant reduction in gastric Tnfα (16 wpi-males and females, P = 0.017 and P = 0.036, respectively and 32 wpi-males only, P = 0.025) and Il-17a (16 wpi-males) (P = 0.025). Taken together, our findings suggest a protective role for MUC5AC/Muc5ac in maintaining gastric antral equilibrium and inhibiting Hp colonization and associated inflammatory pathology.


Asunto(s)
Adenoma/microbiología , Infecciones por Helicobacter/complicaciones , Mucina 5AC/fisiología , Antro Pilórico/patología , Neoplasias Gástricas/microbiología , Animales , Femenino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Infecciones por Helicobacter/patología , Helicobacter pylori/fisiología , Interacciones Huésped-Patógeno , Hiperplasia , Masculino , Metaplasia , Ratones Endogámicos C57BL , Mucinas/metabolismo , Antro Pilórico/metabolismo , Factores Trefoil/metabolismo
7.
Gastroenterology ; 155(6): 1852-1867, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30195448

RESUMEN

BACKGROUND & AIMS: Loss of claudin 18 (CLDN18), a membrane-spanning tight junction protein, occurs during early stages of development of gastric cancer and associates with shorter survival times of patients. We investigated whether loss of CLDN18 occurs in mice that develop intraepithelial neoplasia with invasive glands due to infection with Helicobacter pylori, and whether loss is sufficient to promote the development of similar lesions in mice with or without H pylori infection. METHODS: We performed immunohistochemical analyses in levels of CLDN18 in archived tissues from B6:129 mice infected with H pylori for 6 to 15 months. We analyzed gastric tissues from B6:129S5-Cldn18tm1Lex/Mmucd mice, in which the CLDN18 gene was disrupted in gastric tissues (CLDN18-knockout mice), or from control mice with a full-length CLDN18 gene (CLDN18+/+; B6:129S5/SvEvBrd) or heterozygous disruption of CLDN18 (CLDN18+/-; B6:129S5/SvEvBrd) that were infected with H pylori SS1 or PMSS1 at 6 weeks of age and tissues collected for analysis at 20 and 30 weeks after infection. Tissues from CLDN18-knockout mice and control mice with full-length CLDN18 gene expression were also analyzed without infection at 7 weeks and 2 years after birth. Tissues from control and CLDN18-knockout mice were analyzed by electron microscopy, stained by conventional methods and analyzed for histopathology, prepared by laser capture microdissection and analyzed by RNAseq, and immunostained for lineage markers, proliferation markers, and stem cell markers and analyzed by super-resolution or conventional confocal microscopy. RESULTS: CLDN18 had a basolateral rather than apical tight junction localization in gastric epithelial cells. B6:129 mice infected with H pylori, which developed intraepithelial neoplasia with invasive glands, had increasing levels of CLDN18 loss over time compared with uninfected mice. In B6:129 mice infected with H pylori compared with uninfected mice, CLDN18 was first lost from most gastric glands followed by disrupted and reduced expression in the gastric neck and in surface cells. Gastric tissues from CLDN18-knockout mice had low levels of inflammation but increased cell proliferation, expressed markers of intestinalized proliferative spasmolytic polypeptide-expressing metaplasia, and had defects in signal transduction pathways including p53 and STAT signaling by 7 weeks after birth compared with full-length CLDN18 gene control mice. By 20 to 30 weeks after birth, gastric tissues from uninfected CLDN18-knockout mice developed intraepithelial neoplasia that invaded the submucosa; by 2 years, gastric tissues contained large and focally dysplastic polypoid tumors with invasive glands that invaded the serosa. CONCLUSIONS: H pylori infection of B6:129 mice reduced the expression of CLDN18 early in gastric cancer progression, similar to previous observations from human gastric tissues. CLDN18 regulates cell lineage differentiation and cellular signaling in mouse stomach; CLDN18-knockout mice develop intraepithelial neoplasia and then large and focally dysplastic polypoid tumors in the absence of H pylori infection.


Asunto(s)
Carcinoma in Situ/metabolismo , Claudinas/metabolismo , Infecciones por Helicobacter/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Carcinoma in Situ/etiología , Carcinoma in Situ/microbiología , Carcinoma in Situ/patología , Diferenciación Celular , Linaje de la Célula , Progresión de la Enfermedad , Femenino , Infecciones por Helicobacter/complicaciones , Helicobacter pylori , Hiperplasia/genética , Hiperplasia/microbiología , Masculino , Ratones , Ratones Noqueados , Transducción de Señal , Estómago/microbiología , Estómago/patología , Neoplasias Gástricas/etiología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
8.
Nature ; 503(7475): 272-6, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24089213

RESUMEN

The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(ΔIEC)) or autophagy function (Atg16l1(ΔIEC) or Atg7(ΔIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(ΔIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells.


Asunto(s)
Enfermedades Intestinales/fisiopatología , Mucosa Intestinal/patología , Células de Paneth/patología , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Inflamación , Enfermedades Intestinales/genética , Mucosa Intestinal/citología , Ratones , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología , Proteína 1 de Unión a la X-Box , eIF-2 Quinasa/metabolismo
9.
J Lipid Res ; 59(2): 368-379, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29208699

RESUMEN

Thioesterase superfamily member 1 (Them1) is an acyl-CoA thioesterase that is highly expressed in brown adipose tissue, where it functions to suppress energy expenditure. Lower Them1 expression levels in the liver are upregulated in response to high-fat feeding. Them1-/- mice are resistant to diet-induced obesity, hepatic steatosis, and glucose intolerance, but the contribution of Them1 in liver is unclear. To examine its liver-specific functions, we created conditional transgenic mice, which, when bred to Them1-/- mice and activated, expressed Them1 exclusively in the liver. Mice with liver-specific Them1 expression exhibited no changes in energy expenditure. Rates of fatty acid oxidation were increased, whereas hepatic VLDL triglyceride secretion rates were decreased by hepatic Them1 expression. When fed a high-fat diet, Them1 expression in liver promoted excess steatosis in the setting of reduced rates of fatty acid oxidation and preserved glycerolipid synthesis. Liver-specific Them1 expression did not influence glucose tolerance or insulin sensitivity, but did promote hepatic gluconeogenesis in high-fat-fed animals. This was attributable to the generation of excess fatty acids, which activated PPARα and promoted expression of gluconeogenic genes. These findings reveal a regulatory role for Them1 in hepatocellular fatty acid trafficking.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Palmitoil-CoA Hidrolasa/deficiencia , Palmitoil-CoA Hidrolasa/genética
11.
J Biol Chem ; 288(46): 33376-86, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24072708

RESUMEN

Members of the acyl-CoA thioesterase (Acot) gene family hydrolyze fatty acyl-CoAs, but their biological functions remain incompletely understood. Thioesterase superfamily member 2 (Them2; synonym Acot13) is enriched in oxidative tissues, associated with mitochondria, and relatively specific for long chain fatty acyl-CoA substrates. Using Them2(-/-) mice, we have demonstrated key roles for Them2 in regulating hepatic glucose and lipid metabolism. However, reduced body weights and decreased adiposity in Them2(-/-) mice observed despite increased food consumption were not well explained. To explore a role in thermogenesis, mice were exposed to ambient temperatures ranging from thermoneutrality (30 °C) to cold (4 °C). In response to short term (24-h) exposures to decreasing ambient temperatures, Them2(-/-) mice exhibited increased adaptive responses in physical activity, food consumption, and energy expenditure when compared with Them2(+/+) mice. By contrast, genotype-dependent differences were not observed in mice that were equilibrated (96 h) at each ambient temperature. In brown adipose tissue, the absence of Them2 was associated with reduced lipid droplets, alterations in the ultrastructure of mitochondria, and increased expression of thermogenic genes. Indicative of a direct regulatory role for Them2 in heat production, cultured primary brown adipocytes from Them2(-/-) mice exhibited increased norepinephrine-mediated triglyceride hydrolysis and increased rates of O2 consumption, together with elevated expression of thermogenic genes. At least in part by regulating intracellular fatty acid channeling, Them2 functions in brown adipose tissue to suppress adaptive increases in energy expenditure.


Asunto(s)
Adaptación Biológica/fisiología , Tejido Adiposo Pardo/enzimología , Metabolismo Energético/fisiología , Metabolismo de los Lípidos/fisiología , Termogénesis/fisiología , Tioléster Hidrolasas/metabolismo , Tejido Adiposo Pardo/citología , Animales , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Glucosa/genética , Glucosa/metabolismo , Hígado/citología , Hígado/enzimología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Tioléster Hidrolasas/genética , Triglicéridos/genética , Triglicéridos/metabolismo
12.
bioRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659931

RESUMEN

Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions [1]. To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express PLP1 in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.

13.
J Neuroendocrinol ; 35(11): e13305, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37317882

RESUMEN

The physiology of gastric acid secretion is one of the earliest subjects in medical literature and has been continuously studied since 1833. Starting with the notion that neural stimulation alone drives acid secretion, progress in understanding the physiology and pathophysiology of this process has led to the development of therapeutic strategies for patients with acid-related diseases. For instance, understanding the physiology of parietal cells led to the developments of histamine 2 receptor blockers, proton pump inhibitors (PPIs), and recently, potassium-competitive acid blockers. Furthermore, understanding the physiology and pathophysiology of gastrin has led to the development of gastrin/CCK2 receptor (CCK2 R) antagonists. The need for refinement of existing drugs in patients have led to second and third generation drugs with better efficacy at blocking acid secretion. Further understanding of the mechanism of acid secretion by gene targeting in mice has enabled us to dissect the unique role for each regulator to leverage and justify the development of new targeted therapeutics for acid-related disorders. Further research on the mechanism of stimulation of gastric acid secretion and the physiological significances of gastric acidity in gut microbiome is needed in the future.


Asunto(s)
Ácido Gástrico , Gastrinas , Humanos , Animales , Ratones , Inhibidores de la Bomba de Protones/farmacología , Células Parietales Gástricas , Receptor de Colecistoquinina B
14.
bioRxiv ; 2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36747680

RESUMEN

Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid-base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex Immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na + /H + exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking anti-diarrheal drug, Crofelemer, dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. Inhibition of Notch signaling with the γ-secretase inhibitor, DAPT, recovered apical brush border structure and functional Na + /H + exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum- and glucocorticoid-induced protein kinase 2 (SGK2), and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID. Conflict-of-interest statement: The authors have declared that no conflict of interest exists.

15.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643022

RESUMEN

Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.


Asunto(s)
Síndromes de Malabsorción , Mucolipidosis , Miosina Tipo V , Humanos , Microvellosidades/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Enterocitos/metabolismo , Síndromes de Malabsorción/genética , Síndromes de Malabsorción/terapia , Síndromes de Malabsorción/metabolismo , Mucolipidosis/genética , Mucolipidosis/terapia , Mucolipidosis/metabolismo
16.
Cancer Lett ; 565: 216210, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150501

RESUMEN

Cancer cells use acetate to support the higher demand for energy and lipid biosynthesis during uncontrolled cell proliferation, as well as for acetylation of regulatory proteins. Acyl-CoA thioesterase 12 (Acot12) is the enzyme that hydrolyzes acetyl-CoA to acetate in liver cytosol and is downregulated in hepatocellular carcinoma (HCC). A mechanistic role for Acot12 in hepatocarcinogenesis was assessed in mice in response to treatment with diethylnitrosamine(DEN)/carbon tetrachloride (CCl4) administration or prolonged feeding of a diet that promotes non-alcoholic steatohepatitis (NASH). Relative to controls, Acot12-/- mice exhibited accelerated liver tumor formation that was characterized by the hepatic accumulation of glycerolipids, including lysophosphatidic acid (LPA), and that was associated with reduced Hippo signaling and increased yes-associated protein (YAP)-mediated transcriptional activity. In Acot12-/- mice, restoration of hepatic Acot12 expression inhibited hepatocarcinogenesis and YAP activation, as did knockdown of hepatic YAP expression. Excess LPA produced due to deletion of Acot12 signaled through LPA receptors (LPARs) coupled to Gα12/13 subunits to suppress YAP phosphorylation, thereby promoting its nuclear localization and transcriptional activity. These findings identify a protective role for Acot12 in suppressing hepatocarcinogenesis by limiting biosynthesis of glycerolipids including LPA, which preserves Hippo signaling.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Vía de Señalización Hippo , Neoplasias Hepáticas/patología , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo
17.
J Biol Chem ; 286(16): 14120-8, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21367857

RESUMEN

Kir4.1 channels were found to colocalize with the H(+)/K(+)-ATPase throughout the parietal cell (PC) acid secretory cycle. This study was undertaken to explore their functional role. Acid secretory rates, electrophysiological parameters, PC ultrastructure, and gene and protein expression were determined in gastric mucosae of 7-8-day-old Kir4.1-deficient mice and WT littermates. Kir4.1(-/-) mucosa secreted significantly more acid and initiated secretion significantly faster than WT mucosa. No change in PC number but a relative up-regulation of H(+)/K(+)-ATPase gene and protein expression (but not of other PC ion transporters) was observed. Electron microscopy revealed fully fused canalicular membranes and a lack of tubulovesicles in resting state Kir4.1(-/-) PCs, suggesting that Kir4.1 ablation may also interfere with tubulovesicle endocytosis. The role of this inward rectifier in the PC apical membrane may therefore be to balance between K(+) loss via KCNQ1/KCNE2 and K(+) reabsorption by the slow turnover of the H(+)/K(+)-ATPase, with consequences for K(+) reabsorption, inhibition of acid secretion, and membrane recycling. Our results demonstrate that Kir4.1 channels are involved in the control of acid secretion and suggest that they may also affect secretory membrane recycling.


Asunto(s)
Ácido Gástrico/metabolismo , Regulación de la Expresión Génica , Células Parietales Gástricas/citología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Transporte Biológico , Electrofisiología/métodos , Endocitosis , Mucosa Gástrica/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/química , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Microscopía Fluorescente/métodos , Potasio/química , Canales de Potasio de Rectificación Interna/biosíntesis
18.
Gastroenterology ; 141(6): 2064-75, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21925124

RESUMEN

BACKGROUND & AIMS: Helicobacter pylori infection is a risk factor for gastric cancer. Ammonia/ammonium (A/A) is a cytotoxin generated by H pylori that kills gastric epithelial cells. We investigated whether A/A cytotoxicity occurs by activating N-methyl d-aspartate (NMDA) channels, which results in Ca(2+) permeation and epithelial cell death. METHODS: Gastric epithelial cells were cultured to confluence and then incubated with A/A and NMDA channel or cell signaling antagonists. Cells were incubated with wild-type H pylori or mutant strains that do not produce A/A. Changes in intracellular Ca(2+) were examined in living cells by confocal microscopy. Biochemical and histochemical techniques were used to examine the relationship between A/A-induced cell death and intracellular levels of Ca(2+). RESULTS: A/A increased Ca(2+) permeation in gastric epithelial cells; the increase was blocked by NMDA receptor and cell signaling antagonists. Wild-type, but not mutant H pylori, also caused extensive Ca(2+) permeation of gastric epithelial cells, which was blocked when NMDA-receptor expression was repressed. Ca(2+) that entered cells was initially cytoplasmic and activated proteases. Later, the Ca(2+) was sequestered to cytoplasmic vacuoles that are dilatations of the endoplasmic reticulum. Inositol-3-phosphate-dependent release of Ca(2+) from the endoplasmic reticulum and protease activity damaged mitochondria, reduced levels of adenosine triphosphate, and transcriptionally up-regulated cell death effectors. Expression of the NMDA receptor was altered in stomachs of mice infected with H pylori. CONCLUSIONS: A/A affects gastric epithelial cell viability by allowing excessive Ca(2+) permeation through NMDA channels. NMDA channels might thereby regulate cell survival and death pathways during development of gastric cancers associated with H pylori infection.


Asunto(s)
Calcio/metabolismo , Células Epiteliales/efectos de los fármacos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , N-Metilaspartato/farmacología , Amoníaco/toxicidad , Animales , Western Blotting , Muerte Celular , Células Cultivadas , Citotoxinas/toxicidad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mucosa Gástrica/citología , Infecciones por Helicobacter/metabolismo , Inmunohistoquímica , Ratones , Microscopía Confocal , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo
19.
J Biol Chem ; 285(10): 7493-504, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20056603

RESUMEN

Paneth cells at the base of small intestinal crypts of Lieberkühn secrete host defense peptides and proteins, including alpha-defensins, as mediators of innate immunity. Mouse Paneth cells also express alpha-defensin-related Defcr-rs genes that code for cysteine-rich sequence 4C (CRS4C) peptides that have a unique CPX triplet repeat motif. In ileitis-prone SAMP1/YitFc mice, Paneth cell levels of CRS4C mRNAs and peptides are induced more than a 1000-fold relative to non-prone strains as early as 4 weeks of age, with the mRNA and peptide levels highest in distal ileum and below detection in duodenum. CRS4C-1 peptides are found exclusively in Paneth cells where they occur only in dense core granules and thus are secreted to function in the intestinal lumen. CRS4C bactericidal peptide activity is membrane-disruptive in that it permeabilizes Escherichia coli and induces rapid microbial cell K(+) efflux, but in a manner different from mouse alpha-defensin cryptdin-4. In in vitro studies, inactive pro-CRS4C-1 is converted to bactericidal CRS4C-1 peptide by matrix metalloproteinase-7 (MMP-7) proteolysis of the precursor proregion at the same residue positions that MMP-7 activates mouse pro-alpha-defensins. The absence of processed CRS4C in protein extracts of MMP-7-null mouse ileum demonstrates the in vivo requirement for intracellular MMP-7 in pro-CRS4C processing.


Asunto(s)
Defensinas/metabolismo , Ileítis/metabolismo , Células de Paneth/metabolismo , Precursores de Proteínas/metabolismo , Animales , Antibacterianos/metabolismo , Defensinas/genética , Íleon/citología , Íleon/metabolismo , Íleon/patología , Metaloproteinasa 7 de la Matriz/genética , Metaloproteinasa 7 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Precursores de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Secretoras/ultraestructura , Distribución Tisular , alfa-Defensinas/genética , alfa-Defensinas/metabolismo
20.
Mol Biol Cell ; 32(8): 753-768, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596089

RESUMEN

The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal-epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell-cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.


Asunto(s)
Adhesión Celular/fisiología , Desmocolinas/metabolismo , Animales , Cadherinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Desmocolinas/genética , Desmocolinas/fisiología , Desmogleína 2/metabolismo , Cadherinas Desmosómicas/metabolismo , Cadherinas Desmosómicas/fisiología , Desmosomas/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Mucosa Intestinal , Masculino , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA