Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(49): 17988-17996, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38032406

RESUMEN

The extraction and separation of cellular compounds are crucial steps in numerous biological protocols, particularly in multiomics studies, where several cellular modalities are examined simultaneously. While magnetic particle extraction is commonly used, it may not be applicable for ultralow input samples. Microfluidics has made possible the analysis of rare or low-materiality samples such as circulating tumor cells or single cells through miniaturization of numerous protocols. In this study, a microfluidics workflow for separating different cellular modalities from ultralow input samples is presented. This approach is based on magnetic tweezers technology, allowing the extraction and resuspension of magnetic particles between consecutive nanoliter droplets to perform multistep assays on small volumes. The ability to separate and recover mRNA and gDNA in samples containing less than 10 cells is demonstrated, achieving separation efficiency comparable to the one obtained with conventional pipetting but with a significantly lower amount of starting material, typically 1-2 orders of magnitude less.


Asunto(s)
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Multiómica , Microfluídica/métodos , Bioensayo/métodos , Flujo de Trabajo
2.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454795

RESUMEN

Microfluidics has provided clinicians with new technologies to detect and analyze circulating tumor biomarkers in order to further improve their understanding of disease mechanism, as well as to improve patient management. Among these different biomarkers, circulating tumor cells have proven to be of high interest for different types of cancer and in particular for breast cancer. Here we focus our attention on a breast cancer subtype referred as HER2-positive breast cancer, this cancer being associated with an amplification of HER2 protein at the plasma membrane of cancer cells. Combined with therapies targeting the HER2 protein, HER2-HER3 dimerization blockade further improves a patient's outcome. In this work, we propose a new approach to CTC characterization by on-chip integrating proximity ligation assay, so that we can quantify the HER2-HER3 dimerization event at the level of single CTC. To achieve this, we developed a microfluidic approach combining both CTC capture, identification and HER2-HER3 status quantification by Proximity Ligation Assay (PLA). We first optimized and demonstrated the potential of the on-chip quantification of HER2-HER3 dimerization using cancer cell lines with various levels of HER2 overexpression and validated its clinical potential with a patient's sample treated or not with HER2-targeted therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA