Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomarkers ; 28(6): 538-543, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37548484

RESUMEN

INTRODUCTION: Oxidative stress has been implicated in the pathogenesis of diverse disease states. The present study was designed to examine the effects of magnesium sulphate (MgSO4) against hydrogen peroxide (H2O2) induced behaviour impairment and oxidative damage in rats. MATERIAL AND METHODS: Eighteen rats were equally divided into three groups. The first group was kept as a control. In the second group, H2O2 was given in drinking water at 3% during 5 days. In the third group, rats were subjected to daily administration of H2O2 and MgSO4 (100 mg/kg; b.w) for 5 days. Animals were subjected to behavioural tests (elevated plus maze and open field). At the end of experiment, brains were extracted for oxidative stress biomarkers assessment including levels of malondialdéhyde and hydrogen peroxide and activities of superoxide dismutase and catalase. RESULTS: Our findings showed that H2O2 treated rat exhibited anxiogenic behaviour and the genesis of free radicals in the brain. Magnesium showed amelioration against oxidative stress and significant decrease in anxiety levels. DISCUSSION AND CONCLUSION: Stress is a powerful process that disrupts brain homeostasis by inducing oxidative stress and its appear that magnesium may have potential therapeutic benefits by reducing oxidative stress and inducing anxiolytic effect.


Asunto(s)
Peróxido de Hidrógeno , Fármacos Neuroprotectores , Ratas , Animales , Ratas Wistar , Antioxidantes/farmacología , Antioxidantes/metabolismo , Magnesio/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
2.
Cancers (Basel) ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730703

RESUMEN

Plant-derived polyphenols are bioactive compounds with potential health-promoting properties including antioxidant, anti-inflammatory, and anticancer activity. However, their beneficial effects and biomedical applications may be limited due to their low bioavailability. In the present study, we have considered a microencapsulation-based drug delivery system to investigate the anticancer effects of polyphenol-rich (apigenin, caffeic acid, and luteolin) fractions, extracted from a cereal crop pearl millet (Pennisetum glaucum), using three phenotypically different cellular models of breast cancer in vitro, namely triple negative HCC1806, ER-positive HCC1428, and HER2-positive AU565 cells. Encapsulated polyphenolic extract induced apoptotic cell death in breast cancer cells with different receptor status, whereas it was ineffective against non-tumorigenic MCF10F cells. Encapsulated polyphenolic extract was also found to be cytotoxic against drug-resistant doxorubicin-induced senescent breast cancer cells that were accompanied by increased levels of apoptotic and necrotic markers, cell cycle inhibitor p21 and proinflammatory cytokine IL8. Furthermore, diverse responses to the stimulation with encapsulated polyphenolic extract in senescent breast cancer cells were observed, as in the encapsulated polyphenolic extract-treated non-proliferating AU565 cells, the autophagic pathway, here cytotoxic autophagy, was also induced, as judged by elevated levels of beclin-1 and LC3b. We show for the first time the anti-breast cancer activity of encapsulated polyphenolic extract of pearl millet and postulate that microencapsulation may be a useful approach for potentiating the anticancer effects of phytochemicals with limited bioavailability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA