Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(6): 3335-3345, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36745536

RESUMEN

Multicomponent bioluminescence imaging in vivo requires an expanded collection of tissue-penetrant probes. Toward this end, we generated a new class of near-infrared (NIR) emitting coumarin luciferin analogues (CouLuc-3s). The scaffolds were easily accessed from commercially available dyes. Complementary mutant luciferases for the CouLuc-3 analogues were also identified. The brightest probes enabled sensitive imaging in vivo. The CouLuc-3 scaffolds are also orthogonal to popular bioluminescent reporters and can be used for multicomponent imaging applications. Collectively, this work showcases a new set of bioluminescent tools that can be readily implemented for multiplexed imaging in a variety of biological settings.


Asunto(s)
Luciferina de Luciérnaga , Luciferinas , Mediciones Luminiscentes/métodos , Luciferasas , Cumarinas
2.
Biochim Biophys Acta Proteins Proteom ; 1868(5): 140376, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31981617

RESUMEN

Two groups of metabolically related enzymes, the Group III family of Fe2+-dependent alcohol dehydrogenases (ADHs) and the separate subfamily of nucleoside diphosphates linked to x (nudix) hydrolases that activate Group III ADHs are under-characterized. Here we report the steady-state initial-velocity forward direction (alcohol → aldehyde) reaction of a Group III ADH, namely gamma-hydroxybutyrate dehydrogenase (GHBDH, UniProt: Q59104), cloned from Cupriavidus necator as a fusion protein. We also report the effects of nudix hydrolases on the GHBDH reaction. At optimal pH 9.0, the GHBDH reaction is activated ~2-fold by two different saturating purified nudix hydrolases, namely Bacillus methanolicus activator (ACT, UniProt: I3EA59) and Escherichia coli NudF (UniProt Q93K97) proteins. At physiological pH values of ~7.0, ACT activates by >3.5-fold. Initial-rate characterization at pH 9.0 of the forward direction un-activated and ACT-activated reactions show for both cases competitive inhibition by the product succinic semialdehyde versus GHB, and noncompetitive inhibitions by the three other substrate-product combinations. This pattern is consistent with NAD+ binding first in Mono-Iso Theorell-Chance kinetics. Mutants of some possibly important residues in GHBDH also were characterized. H265, conserved among all Group III ADHs and previously proposed to be a critical general base, is only ~4-fold helpful for GHBDH activity relevant to H265A. The four previously proposed conserved Fe2+ chelators (D193, H197, H261 and H280) each are essential for GHBDH activity. A 2-step explanation for cross-species stimulation by sub-stoichiometric ACT in the forward direction and confirmed lack of ACT stimulation in the reverse direction reaction is proposed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidroxibutirato Deshidrogenasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Hidroxibutirato Deshidrogenasa/química , Hidroxibutirato Deshidrogenasa/genética , Cinética , Mutación , NAD/metabolismo , Pirofosfatasas/metabolismo , Hidrolasas Nudix
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA