Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 56(30): 8790-8794, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28544330

RESUMEN

A series of phosphines featuring a persistent radical were synthesized in two steps by condensation of dialkyl-/diarylchlorophosphines with stable cyclic (alkyl)(amino)carbenes (cAACs) followed by one-electron reduction of the corresponding cationic intermediates. Structural, spectroscopic, and computational data indicate that the spin density in these phosphines is mainly localized on the original carbene carbon from the cAAC fragment; thus, it remains in the α-position with respect to the central phosphorus atom. The potential of these α-radical phosphines to serve as spin-labeled ligands is demonstrated through the preparation of several AuI derivatives, which were also structurally characterized by single-crystal X-ray diffraction.

2.
Org Biomol Chem ; 13(37): 9528-50, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26284434

RESUMEN

The reactions of organic azides and alkynes catalysed by copper species represent the prototypical examples of click chemistry. The so-called CuAAC reaction (copper-catalysed azide-alkyne cycloaddition), discovered in 2002, has been expanded since then to become an excellent tool in organic synthesis. In this contribution the recent results described in the literature since 2010 are reviewed, classified according to the nature of the catalyst precursor: copper(I) or copper(II) salts or complexes, metallic or nano-particulated copper and several solid-supported copper systems.

3.
Chemistry ; 20(12): 3463-74, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24616053

RESUMEN

Well-defined copper(I) complexes of composition [Tpm*(,Br) Cu(NCMe)]BF4 (Tpm*(,Br) =tris(3,5-dimethyl-4-bromo-pyrazolyl)methane) or [Tpa(*) Cu]PF6 (Tpa(*) =tris(3,5-dimethyl-pyrazolylmethyl)amine) catalyze the formation of 2,5-disubstituted oxazoles from carbonyl azides and terminal alkynes in a direct manner. This process represents a novel procedure for the synthesis of this valuable heterocycle from readily available starting materials, leading exclusively to the 2,5-isomer, attesting to a completely regioselective transformation. Experimental evidence and computational studies have allowed the proposal of a reaction mechanism based on the initial formation of a copper-acyl nitrene species, in contrast to the well-known mechanism for the copper-catalyzed alkyne and azide cycloaddition reactions (CuAAC) that is triggered by the formation of a copper-acetylide complex.

4.
Inorg Chem ; 53(8): 4192-201, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24697594

RESUMEN

Novel tris(pyrazolylmethyl)amine ligands Tpa(Me3), Tpa*(,Br), and Tpa(Br3) have been synthesized and structurally characterized. The coordination chemistries of these three new tetradentate tripodal ligands and the already known Tpa and Tpa* have been explored using different copper(I) salts as starting materials. Cationic copper(I) complexes [Tpa(x)Cu]PF6 (1-4) have been isolated from the reaction of [Cu(NCMe)4]PF6 and 1 equiv of the ligand. Complexes 2 (Tpa(x) = Tpa*) and 3 (Tpa(x) = Tpa(Me3)) have been characterized by X-ray studies. The former is a 1D helical coordination polymer, and the latter is a tetranuclear helicate. In both structures, the Tpa(x) ligand adopts a µ(2):κ(2):κ(1)-coordination mode. However, in solution, all of the four complexes form fluxional species. When CuI is used as the copper(I) source, neutral compounds 5-8 have been obtained. Complexes 6-8 exhibit a 1:1 metal-to-ligand ratio, whereas 5 presents 2:1 stoichiometry. Its solid-state structure has been determined by X-ray diffraction, revealing its 3D polymeric nature. The polymer is composed by the assembly of [Tpa2Cu4I4] units, in which Cu4I4 presents a step-stair structure. The Tpa ligands bridge the Cu4I4 clusters, adopting also a µ(2):κ(2):κ(1)-coordination mode. As observed for the cationic derivatives, the NMR spectra of 5-8 show the equivalence of the three pyrazolyl arms of the ligands in these complexes. The reactivities of cationic copper(I) derivatives 1-4 with PPh3 and CO have been explored. In all cases, 1:1 adducts [Tpa(x)CuL]PF6 [L = PPh3 (9-11), CO (12-15)] have been isolated. The crystal structure of [Tpa*Cu(PPh3)]PF6 (9) has been obtained, showing that the coordination geometry around copper(I) is trigonal-pyramidal with the apical position occupied by the tertiary amine N atom. The Tpa* ligand binds the Cu center to three of its four N atoms, with one pyrazolyl arm remaining uncoordinated. In solution, the carbonyl adducts 13-15 exist as a mixture of two isomers; the four- and five-coordinate species can be distinguished by means of their IR νCO stretching bands. Finally, the catalytic activities of complexes 1-4 have been demonstrated in carbene- and nitrene-transfer reactions.

5.
Inorg Chem ; 51(15): 8298-306, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22831915

RESUMEN

Three novel Cu(I) complexes bearing tris(pyrazolyl)methane ligands, Tpm(x), have been prepared from reactions of equimolar amounts of CuI and the ligands Tpm, (HC(pz)(3)), Tpm*, (HC(3,5-Me(2)-pz)(3)), and Tpm(Ms), (HC(3-Ms-pz)(3)). X-ray diffraction studies have shown that the Tpm and Tpm(Ms) derivatives exhibit a 2:1 Cu:ligand ratio, whereas the Tpm* complex is a mononuclear species in nature. The latter has been employed as a precatalyst in the arylation of amides and aromatic thiols with good activity. The synthesis of a Tpm*Cu(I)-phthalimidate, a feasible intermediate in this catalytic process, has also been performed. Low temperature (1)H NMR studies in CDCl(3) have indicated that this complex exists in solution as a mixture of two, neutral and ionic forms. Conductivity measurements have reinforced this proposal, the ionic form predominating in a very polar solvent such as DMSO. The reaction of Tpm*Cu(I)-phthalimidate with iodobenzene afforded the expected C-N coupling product in 76% yield accounting for its role as an intermediate in this transformation.

6.
Dalton Trans ; 45(5): 1872-6, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26174600

RESUMEN

Mono- and dicationic phosphines have been synthesized through the reaction of chloroimidazolinium or chloroamidinium salts with secondary or primary phosphines respectively. The resulting ligands, which depict a significantly reduced donor ability compared with their neutral analogues, have been used to design Pt(II) and Au(I) complexes that effectively catalyse the hydroarylation of alkynes.

7.
Chem Commun (Camb) ; 50(64): 8978-81, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24980244

RESUMEN

Electron deficient azides are challenging substrates in CuAAC reactions. Particularly, when N-carbonyl azides are applied the formation of N-carbonyl triazoles has not yet been observed. We report herein the first example of this class of reaction, with a copper-based system that efficiently enables the synthesis of N-carbamoyl 1,2,3-triazoles by [3+2] cycloaddition of N-carbamoyl azides and alkynes.


Asunto(s)
Alquinos/química , Azidas/química , Cobre/química , Triazoles/química , Catálisis , Reacción de Cicloadición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA