Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Sci ; 132(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31182646

RESUMEN

Chromogranin B (CgB, also known as CHGB) is abundantly expressed in dense core secretory granules of multiple endocrine tissues and has been suggested to regulate granule biogenesis in some cell types, including the pancreatic islet ß-cell, though the mechanisms are poorly understood. Here, we demonstrate a critical role for CgB in regulating secretory granule trafficking in the ß-cell. Loss of CgB impairs glucose-stimulated insulin secretion, impedes proinsulin processing to yield increased proinsulin content, and alters the density of insulin-containing granules. Using an in situ fluorescent pulse-chase strategy to track nascent proinsulin, we show that loss of CgB impairs Golgi budding of proinsulin-containing secretory granules, resulting in a substantial delay in trafficking of nascent granules to the plasma membrane with an overall decrease in total plasma membrane-associated granules. These studies demonstrate that CgB is necessary for efficient trafficking of secretory proteins into the budding granule, which impacts the availability of insulin-containing secretory granules for exocytic release.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cromogranina B/metabolismo , Gránulos Citoplasmáticos/metabolismo , Aparato de Golgi/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cromogranina B/deficiencia , Gránulos Citoplasmáticos/efectos de los fármacos , Glucosa/farmacología , Aparato de Golgi/efectos de los fármacos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Ratas , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/metabolismo
2.
Nucleic Acids Res ; 47(4): e23, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30590691

RESUMEN

Genetic manipulation via transgene overexpression, RNAi, or Cas9-based methods is central to biomedical research. Unfortunately, use of these tools is often limited by vector options. We have created a modular platform (pMVP) that allows a gene of interest to be studied in the context of an array of promoters, epitope tags, conditional expression modalities, and fluorescent reporters, packaged in 35 custom destination vectors, including adenovirus, lentivirus, PiggyBac transposon, and Sleeping Beauty transposon, in aggregate >108,000 vector permutations. We also used pMVP to build an epigenetic engineering platform, pMAGIC, that packages multiple gRNAs and either Sa-dCas9 or x-dCas9(3.7) fused to one of five epigenetic modifiers. Importantly, via its compatibility with adenoviral vectors, pMAGIC uniquely enables use of dCas9/LSD1 fusions to interrogate enhancers within primary cells. To demonstrate this, we used pMAGIC to target Sa-dCas9/LSD1 and modify the epigenetic status of a conserved enhancer, resulting in altered expression of the homeobox transcription factor PDX1 and its target genes in pancreatic islets and insulinoma cells. In sum, the pMVP and pMAGIC systems empower researchers to rapidly generate purpose-built, customized vectors for manipulation of gene expression, including via targeted epigenetic modification of regulatory elements in a broad range of disease-relevant cell types.


Asunto(s)
Sistemas CRISPR-Cas/genética , Ingeniería Genética/métodos , Vectores Genéticos/genética , Proteínas de Homeodominio/genética , Transactivadores/genética , Transgenes/genética , Adenoviridae/genética , Animales , Elementos Transponibles de ADN/genética , Elementos de Facilitación Genéticos/genética , Epigenómica/métodos , Edición Génica/métodos , Regulación de la Expresión Génica/genética , Células HEK293 , Histona Demetilasas/genética , Humanos , Insulinoma/metabolismo , Islotes Pancreáticos/metabolismo , Lentivirus/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN Guía de Kinetoplastida/genética , Ratas
3.
J Biol Chem ; 288(32): 23128-40, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23788641

RESUMEN

Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated potassium channel family member Kv2.2 in islet ß-cells. siRNA-mediated suppression of ICDc, citrate/isocitrate carrier, or Kv2.2 expression impaired GSIS, and the effect of ICDc knockdown was rescued by re-expression of Kv2.2. Moreover, chronic exposure of ß-cells to elevated fatty acids, which impairs GSIS, resulted in decreased expression of Kv2.2. Surprisingly, knockdown of ICDc or Kv2.2 increased rather than decreased outward K(+) current in the 832/13 ß-cell line. Immunoprecipitation studies demonstrated interaction of Kv2.1 and Kv2.2, and co-overexpression of the two channels reduced outward K(+) current compared with overexpression of Kv2.1 alone. Also, siRNA-mediated knockdown of ICDc enhanced the suppressive effect of the Kv2.1-selective inhibitor stromatoxin1 on K(+) currents. Our data support a model in which a key function of the pyruvate-isocitrate cycle is to maintain levels of Kv2.2 expression sufficient to allow it to serve as a negative regulator of Kv channel activity.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Isocitratos/metabolismo , Ácido Pirúvico/metabolismo , Canales de Potasio Shab/biosíntesis , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Masculino , Modelos Biológicos , Péptidos/farmacología , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/genética , Venenos de Araña/farmacología
4.
Mol Metab ; 79: 101848, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042369

RESUMEN

OBJECTIVE: All forms of diabetes result from insufficient functional ß-cell mass. Thus, achieving the therapeutic goal of expanding ß-cell mass requires a better mechanistic understanding of how ß-cells proliferate. Glucose is a natural ß-cell mitogen that mediates its effects in part through the glucose-responsive transcription factor, carbohydrate response element binding protein (ChREBP) and the anabolic transcription factor, MYC. However, mechanistic details by which glucose activates Myc at the transcriptional level are poorly understood. METHODS: Here, siRNA was used to test the role of ChREBP in the glucose response of MYC, ChIP and ChIPseq to identify potential regulatory binding sites, chromatin conformation capture to identify DNA/DNA interactions, and an adenovirus was constructed to expresses x-dCas9 and an sgRNA that specifically disrupts the recruitment of ChREBP to a specific targeted ChoRE. RESULTS: We found that ChREBP is essential for glucose-mediated transcriptional induction of Myc, and for increases in Myc mRNA and protein abundance. Further, ChIPseq revealed that the carbohydrate response element (ChoRE) nearest to the Myc transcriptional start site (TSS) is immediately upstream of the gene encoding the lncRNA, Pvt1, 60,000 bp downstream of the Myc gene. Chromatin Conformation Capture (3C) confirmed a glucose-dependent interaction between these two sites. Transduction with an adenovirus expressing x-dCas9 and an sgRNA specifically targeting the highly conserved Pvt1 ChoRE, attenuates ChREBP recruitment, decreases Myc-Pvt1 DNA/DNA interaction, and decreases expression of the Pvt1 and Myc genes in response to glucose. Importantly, isolated and dispersed rat islet cells transduced with the ChoRE-disrupting adenovirus also display specific decreases in ChREBP-dependent, glucose-mediated expression of Pvt1 and Myc, as well as decreased glucose-stimulated ß-cell proliferation. CONCLUSIONS: The mitogenic glucose response of Myc is mediated via glucose-dependent recruitment of ChREBP to the promoter of the Pvt1 gene and subsequent DNA looping with the Myc promoter.


Asunto(s)
Genes myc , Glucosa , Animales , Ratas , Cromatina/genética , ADN , Glucosa/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Proteínas Proto-Oncogénicas c-myc
5.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36413406

RESUMEN

Carbohydrate response element-binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans. HGFAC is a protease that activates the pleiotropic hormone hepatocyte growth factor. We demonstrate that HGFAC-KO mice had phenotypes concordant with putative loss-of-function variants in human HGFAC. Moreover, in gain- and loss-of-function genetic mouse models, we demonstrate that HGFAC enhanced lipid and glucose homeostasis, which may be mediated in part through actions to activate hepatic PPARγ activity. Together, our studies show that ChREBP mediated an adaptive response to overnutrition via activation of HGFAC in the liver to preserve glucose and lipid homeostasis.


Asunto(s)
Glucosa , Factores de Transcripción , Animales , Humanos , Ratones , Glucosa/metabolismo , Homeostasis , Lípidos , Factores de Transcripción/metabolismo
6.
JCI Insight ; 4(5)2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30720465

RESUMEN

Paracrine interactions between pancreatic islet cells have been proposed as a mechanism to regulate hormone secretion and glucose homeostasis. Here, we demonstrate the importance of proglucagon-derived peptides (PGDPs) for α to ß cell communication and control of insulin secretion. Signaling through this system occurs through both the glucagon-like peptide receptor (Glp1r) and glucagon receptor (Gcgr). Loss of PGDPs, or blockade of their receptors, decreases insulin secretion in response to both metabolic and nonmetabolic stimulation of mouse and human islets. This effect is due to reduced ß cell cAMP and affects the quantity but not dynamics of insulin release, indicating that PGDPs dictate the magnitude of insulin output in an isolated islet. In healthy mice, additional factors that stimulate cAMP can compensate for loss of PGDP signaling; however, input from α cells is essential to maintain glucose tolerance during the metabolic stress induced by high-fat feeding. These findings demonstrate an essential role for α cell regulation of ß cells, raising the possibility that abnormal paracrine signaling contributes to impaired insulin secretion in diabetes. Moreover, these findings support reconsideration of the role for α cells in postprandial glucose control.


Asunto(s)
AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Proglucagón/metabolismo , Transducción de Señal , Animales , Femenino , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
7.
JCI Insight ; 3(5)2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29515039

RESUMEN

Current obesity interventions suffer from lack of durable effects and undesirable complications. Fumagillin, an inhibitor of methionine aminopeptidase-2, causes weight loss by reducing food intake, but with effects on weight that are superior to pair-feeding. Here, we show that feeding of rats on a high-fat diet supplemented with fumagillin (HF/FG) suppresses the aggressive feeding observed in pair-fed controls (HF/PF) and alters expression of circadian genes relative to the HF/PF group. Multiple indices of reduced energy expenditure are observed in HF/FG but not HF/PF rats. HF/FG rats also exhibit changes in gut hormones linked to food intake, increased energy harvest by gut microbiota, and caloric spilling in the urine. Studies in gnotobiotic mice reveal that effects of fumagillin on energy expenditure but not feeding behavior may be mediated by the gut microbiota. In sum, fumagillin engages weight loss-inducing behavioral and physiologic circuits distinct from those activated by simple caloric restriction.


Asunto(s)
Bacterias/aislamiento & purificación , Ciclohexanos/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos Insaturados/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Aminopeptidasas/antagonistas & inhibidores , Animales , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Heces/microbiología , Conducta Alimentaria/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes/efectos de los fármacos , Vida Libre de Gérmenes/fisiología , Glicoproteínas/antagonistas & inhibidores , Humanos , Masculino , Metionil Aminopeptidasas , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Ratas , Ratas Wistar , Sesquiterpenos/administración & dosificación , Resultado del Tratamiento , Pérdida de Peso/efectos de los fármacos
8.
Cell Metab ; 27(6): 1281-1293.e7, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29779826

RESUMEN

Branched-chain amino acids (BCAA) are strongly associated with dysregulated glucose and lipid metabolism, but the underlying mechanisms are poorly understood. We report that inhibition of the kinase (BDK) or overexpression of the phosphatase (PPM1K) that regulates branched-chain ketoacid dehydrogenase (BCKDH), the committed step of BCAA catabolism, lowers circulating BCAA, reduces hepatic steatosis, and improves glucose tolerance in the absence of weight loss in Zucker fatty rats. Phosphoproteomics analysis identified ATP-citrate lyase (ACL) as an alternate substrate of BDK and PPM1K. Hepatic overexpression of BDK increased ACL phosphorylation and activated de novo lipogenesis. BDK and PPM1K transcript levels were increased and repressed, respectively, in response to fructose feeding or expression of the ChREBP-ß transcription factor. These studies identify BDK and PPM1K as a ChREBP-regulated node that integrates BCAA and lipid metabolism. Moreover, manipulation of the BDK:PPM1K ratio relieves key metabolic disease phenotypes in a genetic model of severe obesity.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , ATP Citrato (pro-S)-Liasa/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Lipogénesis , Obesidad/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Proteína Fosfatasa 2C , Ratas , Ratas Wistar , Ratas Zucker
9.
PLoS One ; 12(2): e0172567, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28212395

RESUMEN

Increased ß-cell death coupled with the inability to replicate existing ß-cells drives the decline in ß-cell mass observed in the progression of both major forms of diabetes. Understanding endogenous mechanisms of islet cell survival could have considerable value for the development of novel strategies to limit ß-cell loss and thereby promote ß-cell recovery. Insulinoma cells have provided useful insight into ß-cell death pathways but observations made in cell lines sometimes fail to translate to primary islets. Here, we report dramatic differences in the temporal regulation and engagement of the apoptotic program in primary rodent islets relative to the INS-1 derived 832/13 cell line. As expected, 832/13 cells rapidly induced cell stress markers in response to ER stress or DNA damage and were fully committed to apoptosis, resulting in >80% cell death within 24 h. In contrast, primary rat islets were largely refractory to cell death in response to ER stress and DNA damage, despite rapid induction of stress markers, such as XBP-1(s), CHOP, and PUMA. Gene expression profiling revealed a general suppression of pro-apoptotic machinery, such as Apaf-1 and caspase 3, and sustained levels of pro-survival factors, such as cIAP-1, cIAP-2, and XIAP, in rat islets. Furthermore, we observed sustained induction of autophagy following chronic ER stress and found that inhibition of autophagy rendered islet ß-cells highly vulnerable to ER stress-induced cell death. We propose that islet ß-cells dampen the apoptotic response to delay the onset of cell death, providing a temporal window in which autophagy can be activated to limit cellular damage and promote survival.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Islotes Pancreáticos/citología , Animales , Factor Apoptótico 1 Activador de Proteasas , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/fisiología , Células Cultivadas , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Insulina/metabolismo , Secreción de Insulina , Insulinoma/patología , Islotes Pancreáticos/fisiología , Neoplasias Pancreáticas/patología , Ratas
10.
Mol Cell Biol ; 36(23): 2918-2930, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27620967

RESUMEN

The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in ß-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a ß-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and ß cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor ß (TGF-ß) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and ß-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and ß cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Subunidades beta de Inhibinas/genética , Insulina/genética , Islotes Pancreáticos/citología , Transactivadores/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Ratas
11.
Mol Cell Biol ; 33(20): 4017-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23938296

RESUMEN

The homeodomain transcription factor Pdx-1 has important roles in pancreatic development and ß-cell function and survival. In the present study, we demonstrate that adenovirus-mediated overexpression of Pdx-1 in rat or human islets also stimulates cell replication. Moreover, cooverexpression of Pdx-1 with another homeodomain transcription factor, Nkx6.1, has an additive effect on proliferation compared to either factor alone, implying discrete activating mechanisms. Consistent with this, Nkx6.1 stimulates mainly ß-cell proliferation, whereas Pdx-1 stimulates both α- and ß-cell proliferation. Furthermore, cyclins D1/D2 are upregulated by Pdx-1 but not by Nkx6.1, and inhibition of cdk4 blocks Pdx-1-stimulated but not Nkx6.1-stimulated islet cell proliferation. Genes regulated by Pdx-1 but not Nkx6.1 were identified by microarray analysis. Two members of the transient receptor potential cation (TRPC) channel family, TRPC3 and TRPC6, are upregulated by Pdx-1 overexpression, and small interfering RNA (siRNA)-mediated knockdown of TRPC3/6 or TRPC6 alone inhibits Pdx-1-induced but not Nkx6.1-induced islet cell proliferation. Pdx-1 also stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, an effect partially blocked by knockdown of TRPC3/6, and blockade of ERK1/2 activation with a MEK1/2 inhibitor partially impairs Pdx-1-stimulated proliferation. These studies define a pathway by which overexpression of Pdx-1 activates islet cell proliferation that is distinct from and additive to a pathway activated by Nkx6.1.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Canales Catiónicos TRPC/genética , Transactivadores/genética , Adenoviridae/genética , Animales , Proliferación Celular , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos , Células Secretoras de Glucagón/citología , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/citología , Masculino , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6 , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA