Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
3.
Front Cell Dev Biol ; 11: 1146062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065853

RESUMEN

The gut microbiome (GM), the gut barrier, and the blood-brain barrier (BBB) are key elements of the gut-brain axis (GBA). The advances in organ-on-a-chip and induced pluripotent stem cell (iPSCs) technology might enable more physiological gut-brain-axis-on-a-chip models. The ability to mimic complex physiological functions of the GBA is needed in basic mechanistic research as well as disease research of psychiatric, neurodevelopmental, functional, and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These brain disorders have been associated with GM dysbiosis, which may affect the brain via the GBA. Although animal models have paved the way for the breakthroughs and progression in the understanding of the GBA, the fundamental questions of exactly when, how, and why still remain unanswered. The research of the complex GBA have relied on equally complex animal models, but today's ethical knowledge and responsibilities demand interdisciplinary development of non-animal models to study such systems. In this review we briefly describe the gut barrier and BBB, provide an overview of current cell models, and discuss the use of iPSCs in these GBA elements. We highlight the perspectives of producing GBA chips using iPSCs and the challenges that remain in the field.

4.
Cells ; 12(3)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36766763

RESUMEN

Modeling Alzheimer's disease (AD) using human-induced pluripotent stem cells (iPSCs) is a field now spanning 15 years. Developments in the field have shown a shift in using simple 2D cortical neuron models to more advanced tri-cultures and 3D cerebral organoids that recapitulate more features of the disease. This is largely due to development and optimization of new cell protocols. In this review, we highlight recent major breakthroughs in the AD field and the implications this has in modeling AD using iPSCs (AD-iPSCs). To date, AD-iPSCs have been largely used to recapitulate and study impaired amyloid precursor protein (APP) processing and tau phosphorylation in both familial and sporadic AD. AD-iPSCs have also been studied for varying neuronal and glial dysfunctions. Moreover, they have been useful for discovering new molecular mechanisms, such as identifying proteins that bridge APP processing with tau phosphorylation and for identifying molecular pathways that bridge APP processing dysfunction with impaired cholesterol biosynthesis. Perhaps the greatest use of AD-iPSCs has been in discovering compounds via drug screening, that reduce amyloid beta (Aß) in neurons, such as the anti-inflammatory compound, cromolyn, and antiparasitic drugs, avermectins. In addition, high content screening using AD-iPSCs has led to the identification of statins that can reduce levels of phosphorylated tau (p-Tau) in neurons. Some of these compounds have made it through to testing in human clinical trials. Improvements in omic technologies including single cell RNA sequencing and proteomics as well as advances in production of iPSC-cerebral organoids and tri-cultures is likely to result in the further discovery of new drugs and treatments for AD. Some caveats remain in the field, including, long experimental conditions to create mature neurons, high costs of media that limit research capabilities, and a lack of reproducibility using current iPSC-cerebral organoid protocols. Despite these current limitations, AD-iPSCs remain an excellent cellular model for studying AD mechanisms and for drug discovery.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Reproducibilidad de los Resultados , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo
5.
Reprod Fertil Dev ; 25(1): 94-102, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23244832

RESUMEN

Understanding the cell signalling events that govern cell renewal in porcine pluripotent cells may help improve culture conditions and allow for establishment of bona fide porcine embryonic stem cells (pESC) and stable porcine induced pluripotent stem cells (piPSC). This review investigates cell signalling in the porcine preimplantation embryo containing either the inner cell mass or epiblast, with particular emphasis on fibroblast growth factor, SMAD, WNT and Janus tyrosine kinases/signal transducers and activators of transcription signalling. It is clear that key differences exist in the cell signalling events that govern pluripotency in this species compared with similar embryonic stages in mouse and human. The fact that bona fide pESC have still not been produced and that piPSC cannot survive in culture following the silencing or downregulation of the reprogramming transgenes suggest that culture conditions are not optimal. Unravelling the factor/s that regulate pluripotency in porcine embryos will pave the way for future establishment of stable pluripotent stem cell lines.


Asunto(s)
Comunicación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Pluripotentes/metabolismo , Sus scrofa/embriología , Animales , Antígenos de Diferenciación/metabolismo , Blastocisto/citología , Blastocisto/metabolismo , Línea Celular , Ectogénesis , Embrión de Mamíferos/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Células Madre Pluripotentes/citología , Embarazo , Especificidad de la Especie , Sus scrofa/metabolismo
6.
J Comp Neurol ; 530(15): 2711-2748, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35603771

RESUMEN

Little is known about the development of the human entorhinal cortex (EC), a major hub in a widespread network for learning and memory, spatial navigation, high-order processing of object information, multimodal integration, attention and awareness, emotion, motivation, and perception of time. We analyzed a series of 20 fetal and two adult human brains using Nissl stain, acetylcholinesterase (AChE) histochemistry, and immunocytochemistry for myelin basic protein (MBP), neuronal nuclei antigen (NeuN), a pan-axonal neurofilament marker, and synaptophysin, as well as postmortem 3T MRI. In comparison with other parts of the cerebral cortex, the cytoarchitectural differentiation of the EC begins remarkably early, in the 10th week of gestation (w.g.). The differentiation occurs in a superficial magnocellular layer in the deep part of the marginal zone, accompanied by cortical plate (CP) condensation and multilayering of the deep part of CP. These processes last until the 13-14th w.g. At 14 w.g., the superficial lamina dissecans (LD) is visible, which divides the CP into the lamina principalis externa (LPE) and interna (LPI). Simultaneously, the rostral LPE separates into vertical cell-dense islands, whereas in the LPI, the deep LD emerges as a clear acellular layer. In the 16th w.g., the LPE remodels into vertical cell-dense and cell-sparse zones with a caudorostral gradient. At 20 w.g., NeuN immunoreactivity is most pronounced in the islands of layer II cells, whereas migration and differentiation inside-out gradients are seen simultaneously in both the upper (LPE) and the lower (LPI) pyramidal layers. At this stage, the EC adopts for the first time an adult-like cytoarchitectural organization, the superficial LD becomes discernible by 3T MRI, MBP-expressing oligodendrocytes first appear in the fimbria and the perforant path (PP) penetrates the subiculum to reach its molecular layer and travels along through the Cornu Ammonis fields to reach the suprapyramidal blade of the dentate gyrus, whereas the entorhinal-dentate branch perforates the hippocampal sulcus about 2-3 weeks later. The first AChE reactivity appears as longitudinal stripes at 23 w.g. in layers I and II of the rostrolateral EC and then also as AChE-positive in-growing fibers in islands of superficial layer III and layer II neurons. At 40 w.g., myelination of the PP starts as patchy MBP-immunoreactive oligodendrocytes and their processes. Our results refute the possibility of an inside-out pattern of the EC development and support the key role of layer II prospective stellate cells in the EC lamination. As the early cytoarchitectural differentiation of the EC is paralleled by the neurochemical development, these developmental milestones in EC structure and connectivity have implications for understanding its normal function, including its puzzling modular organization and potential contribution to consciousness content (awareness), as well as for its insufficiently explored deficits in developmental, psychiatric, and degenerative brain disorders.


Asunto(s)
Acetilcolinesterasa , Corteza Entorrinal , Desarrollo Fetal , Acetilcolinesterasa/metabolismo , Adulto , Corteza Entorrinal/crecimiento & desarrollo , Femenino , Feto , Hipocampo/crecimiento & desarrollo , Humanos , Neuronas/metabolismo , Embarazo , Estudios Prospectivos
7.
Front Cell Dev Biol ; 10: 976549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046338

RESUMEN

Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.

8.
Cell Mol Biol Lett ; 16(1): 79-88, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21161417

RESUMEN

The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.


Asunto(s)
Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Prepucio/citología , Perfilación de la Expresión Génica , Humanos , Masculino , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Serpinas/genética , Serpinas/metabolismo
9.
Dev Dyn ; 239(11): 2911-20, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20865782

RESUMEN

Characterization of the pluripotent cell populations within the porcine embryo is essential for understanding pluripotency and self-renewal regulation in the inner cell mass (ICM) and epiblast. In this study, we perform detailed ultrastructural and molecular characterization of the developing pluripotent cell population as it develops from the ICM to the late epiblast. The ultrastructural observations revealed that the outer cells of the ICM have a high nuclear:cytoplasmic ratio but are transcriptionally inactive and contain mitochondria with few cristae. In contrast, the epiblast cells have a reduced nuclear:cytoplasmic ratio, are more transcriptionally active, and contain abundant cellular organelles. This study also revealed cavitation and potential unfolding of the epiblast. As the ICM forms the epiblast, SSEA1 is lost and VIMENTIN is lost and re-expressed. The D6 blastocyst expressed high levels of STELLA, TERF1, and GDF3, and the epiblast expressed epithelial markers, MUC1 and E-CADHERIN, and the pluripotency markers, DNMT3B and CRIPTO.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Masa Celular Interna del Blastocisto/ultraestructura , Embrión de Mamíferos/metabolismo , Estratos Germinativos/metabolismo , Estratos Germinativos/ultraestructura , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/ultraestructura , Animales , Masa Celular Interna del Blastocisto/citología , Cadherinas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Embrión de Mamíferos/citología , Estratos Germinativos/citología , Factor 3 de Diferenciación de Crecimiento/metabolismo , Humanos , Inmunohistoquímica , Antígeno Lewis X/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Mucina-1/metabolismo , Células Madre Pluripotentes/citología , Reacción en Cadena de la Polimerasa , Porcinos , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Uniones Estrechas/metabolismo , Vimentina/metabolismo
10.
Stem Cells Dev ; 30(7): 374-385, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33599158

RESUMEN

The course of differentiation of pluripotent stem cells into cardiomyocytes and the intermediate cell types are characterized using molecular markers for different stages of development. These markers have been selected primarily from studies in the mouse and from a limited number of human studies. However, it is not clear how well mouse cardiogenesis compares with human cardiogenesis at the molecular level. We tackle this issue by analyzing and comparing the expression of common cardiomyogenesis markers [platelet-derived growth factor receptor, alpha polypeptide (PDGFR-α), fetal liver kinase 1 (FLK1), ISL1, NK2 homeobox 5 (NKX2.5), cardiac troponin T (CTNT), connexin43 (CX43), and myosin heavy chain 7 (MYHC-B)] in the developing pig heart at embryonic day (E)15, E16, E18, E20, E22, and E24 and in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs). We found that porcine expression of the mesoderm marker FLK1 and the cardiac progenitor marker ISL1 was in line with our differentiating hiPSC and reported murine expression. The cardiac lineage marker NKX2.5 was expressed at almost all stages in the pig and hiPSC, with an earlier onset in the hiPSC compared with reported murine expression. Markers of immature cardiomyocytes, CTNT, and MYHC-B were consistently expressed throughout E16-E70 in the pig, which is comparable with mouse development, whereas the markers increased over time in the hiPSC. However, the commonly used mature cardiomyocyte marker, CX43, should be used with caution, as it was also expressed in the pig mesoderm, as well as hiPSC immature cardiomyocytes, while this has not been reported in mice. Based on our observations in the various species, we suggest to use FLK1/PDGFR-α for identifying cardiac mesoderm and ISL1/NKX2.5 for cardiac progenitors. Furthermore, a combination of two or more of the following, CTNT+/MYHC-B+/ISL1+ could mark immature cardiomyocytes and CTNT+/ISL1- mature cardiomyocytes. CX43 should be used together with sarcomeric proteins. This knowledge may help improving differentiation of hiPSC into more in vivo-like cardiac tissue in the future.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Corazón/embriología , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Línea Celular , Femenino , Proteína Homeótica Nkx-2.5/biosíntesis , Humanos , Inmunohistoquímica/métodos , Células Madre Pluripotentes Inducidas/citología , Ratones , Miocardio/citología , Miocitos Cardíacos/citología , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Porcinos
11.
Front Neuroanat ; 15: 663667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025365

RESUMEN

The entorhinal cortex (EC) is the spatial processing center of the brain and structurally is an interface between the three layered paleocortex and six layered neocortex, known as the periarchicortex. Limited studies indicate peculiarities in the formation of the EC such as early emergence of cells in layers (L) II and late deposition of LIII, as well as divergence in the timing of maturation of cell types in the superficial layers. In this study, we examine developmental events in the entorhinal cortex using an understudied model in neuroanatomy and development, the pig and supplement the research with BrdU labeling in the developing mouse EC. We determine the pig serves as an excellent anatomical model for studying human neurogenesis, given its long gestational length, presence of a moderate sized outer subventricular zone and early cessation of neurogenesis during gestation. Immunohistochemistry identified prominent clusters of OLIG2+ oligoprogenitor-like cells in the superficial layers of the lateral EC (LEC) that are sparser in the medial EC (MEC). These are first detected in the subplate during the early second trimester. MRI analyses reveal an acceleration of EC growth at the end of the second trimester. BrdU labeling of the developing MEC, shows the deeper layers form first and prior to the superficial layers, but the LV/VI emerges in parallel and the LII/III emerges later, but also in parallel. We coin this lamination pattern parallel lamination. The early born Reln+ stellate cells in the superficial layers express the classic LV marker, Bcl11b (Ctip2) and arise from a common progenitor that forms the late deep layer LV neurons. In summary, we characterize the developing EC in a novel animal model and outline in detail the formation of the EC. We further provide insight into how the periarchicortex forms in the brain, which differs remarkably to the inside-out lamination of the neocortex.

12.
Trends Neurosci ; 31(3): 146-53, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18255164

RESUMEN

Embryonic stem cells (ESCs) provide hope as a potential regenerative therapy for neurological conditions such as Parkinson's disease and spinal cord injury. Currently, ESC-based nervous system repair faces several problems. One major hurdle is related to problems in generating large and defined populations of the desired types of neurons from human ESCs (hESCs). Moreover, survival of grafted hESC-derived cells has varied and functional recovery in recipient animals has often been disappointing. Importantly, in clinical trials, adverse effects after surgery, including tumors or vigorous immune reactions, must be avoided. Here we highlight attempts to overcome these hurdles with hESCs intended for central nervous system repair. We focus on hESC-derived dopamine-producing neurons that can be grafted in Parkinson's disease and identify critical experiments that need to be conducted before clinical trials can occur.


Asunto(s)
Encéfalo/cirugía , Dopamina/metabolismo , Células Madre Embrionarias/trasplante , Enfermedad de Parkinson/cirugía , Trasplante de Células Madre/métodos , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular , Células Madre Embrionarias/metabolismo , Supervivencia de Injerto , Humanos , Ratones
13.
Mol Reprod Dev ; 77(6): 540-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20422712

RESUMEN

The epigenetic marks H3K27me3 and H3K4me3 are important repressive and permissive histone modifications, respectively, which are involved in gene regulation such as Hox gene expression during embryonic development. In this study, we investigated the global levels of these two histone modifications. We also investigated the expression of H3K27me3's methyltransferase (EZH2), EZH2 co-factors (EED and SUZ12) and demethylases (JMJD3 and UTX), as well as H3K4me3's methylases (ASH1L and MLL1) and demethylase (RBP2) in porcine pre-implantation embryos. In addition, the expression of Hox genes, HOXA2, HOXA3, HOXA7, HOXA10, HOXB4, HOXB7, HOXC8, HOXD8, and HOXD10 was investigated. We found that global levels of H3K27me3 decreased from the 1- to the 4-cell stage, corresponding to the time of major embryonic genome activation. Subsequently, the levels increased in hatched blastocysts, particularly in the trophectoderm. The expression levels of EZH2, EED, SUZ12, JMJD3, and UTX correlated well with these findings. The global levels of H3K4me3 decreased from the 1-cell to the morula stage and increased in hatched blastocysts, especially in trophectoderm. A peak in expression of ASH1L was seen at the 4-cell stage, but overall, expression of ASH1L, MLL1, and RBP2 correlated poorly with H3K4me3. HOXA3, A7, and B4 were expressed in 4-cell embryos, and HOXA7, A10, B4, and D8 were expressed in hatched blastocysts, and did not correlate well to global methylation of H3K27me3 or H3K4me3. Thus, H3K4me3 may play a role in early porcine embryonic genome activation, whereas, H3K27me3 may be involved in initial cell lineage segregation in the blastocyst.


Asunto(s)
Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Histonas , Lisina/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Histonas/genética , Histonas/metabolismo , Humanos , Embarazo , Porcinos
14.
Reprod Fertil Dev ; 22(4): 625-33, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20353722

RESUMEN

The aim of the present study was to characterise bovine epiblast-derived outgrowth colonies (OCs) with respect to the embryonic origin of their cellular components. Epiblasts were isolated mechanically from bovine Day 12 embryos. Epiblasts were cultured on feeder layers of SNL cells (neomycin-resistant leukaemia inhibitory factor (LIF)-producing STO cells) in Dulbecco's modified Eagle's medium (DMEM)/F12 medium supplemented with 15% fetal calf serum, 5% KnockOut Serum Replacement, LIF, basic fibroblast growth factor, non-essential amino acids (NEAA) and nucleosides. Samples were fixed on Days 4, 6 and 8 of culture and processed for immunocytochemistry and transmission electron microscopy. Epiblasts formed OCs consisting of a central core of epiblast-like cells with a basal plate of flattened cells extending outwards from the core. The cells of the core showed nuclear octamer-binding transcription factor 4 (OCT4) staining, indicating an epiblast origin, and some also stained positive for cytoplasmic vimentin. Adjacent cells were linked by tight junctions towards the surface of the colony and rested on a basal lamina. The cells of the basal plate predominantly stained for alpha1-fetoprotein (AFP), indicative of a possible hypoblast origin. Only a few cells scattered within the basal plate exhibited cytokeratin 8 staining, indicating a trophectoderm nature. The intensity of OCT4 and vimentin staining within the core had decreased by Day 8 of culture. In conclusion, OCs derived from bovine Day 12 epiblasts display a central core of OCT4-stained cells of a potential epiblast origin surrounded by a basal plate of mainly AFP-stained cells of a potential hypoblast nature.


Asunto(s)
Bovinos/fisiología , Embrión de Mamíferos/fisiología , Estratos Germinativos/fisiología , Animales , Bovinos/embriología , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Femenino , Estratos Germinativos/ultraestructura , Inmunohistoquímica/veterinaria , Microscopía Electrónica de Transmisión/veterinaria , Factor 3 de Transcripción de Unión a Octámeros/fisiología , alfa-Fetoproteínas/fisiología
15.
Prog Neurobiol ; 85(4): 407-32, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18586376

RESUMEN

Several exciting approaches for restorative therapy in Parkinson's disease have emerged over the past two decades. This review initially describes experimental and clinical data regarding growth factor administration. We focus on glial cell line-derived neurotrophic factor (GDNF), particularly its role in neuroprotection and in regeneration in Parkinson's disease. Thereafter, we discuss the challenges currently facing cell transplantation in Parkinson's disease and briefly consider the possibility to continue testing intrastriatal transplantation of fetal dopaminergic progenitors clinically. We also give a more detailed overview of the developmental biology of dopaminergic neurons and the potential of certain stem cells, i.e. neural and embryonic stem cells, to differentiate into dopaminergic neurons. Finally, we discuss adult neurogenesis as a potential tool for restoring lost dopamine neurons in patients suffering from Parkinson's disease.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/terapia , Sistemas de Liberación de Medicamentos , Terapia Genética/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos
16.
Nat Neurosci ; 23(12): 1456-1468, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32839617

RESUMEN

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.


Asunto(s)
Células/clasificación , Neocórtex/citología , Transcriptoma , Animales , Biología Computacional , Humanos , Neuroglía/clasificación , Neuronas/clasificación , Análisis de la Célula Individual , Terminología como Asunto
17.
Rev Neurosci ; 30(7): 685-700, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30849050

RESUMEN

The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer's disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.

18.
J Vet Sci ; 20(2): e3, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30944526

RESUMEN

The development of long-term surviving fetal cell cultures from primary cell tissue from the developing brain is important for facilitating studies investigating neural development and for modelling neural disorders and brain congenital defects. The field faces current challenges in co-culturing both progenitors and neurons long-term. Here, we culture for the first time, porcine fetal cells from the dorsal telencephalon at embryonic day (E) 50 and E60 in conditions that promoted both the survival of progenitor cells and young neurons. We applied a novel protocol designed to collect, isolate and promote survival of both progenitors and young neurons. Herein, we used a combination of low amount of fetal bovine serum, together with pro-survival factors, including basic fibroblast growth factor and retinoic acid, together with arabinofuranosylcytosine and could maintain progenitors and facilitate in vitro differentiation into calbindin 1+ neurons and reelin+ interneurons for a period of 7 days. Further improvements to the protocol that might extend the survival of the fetal primary neural cells would be beneficial. The development of new porcine fetal culture methods is of value for the field, given the pig's neuroanatomical and developmental similarities to the human brain.


Asunto(s)
Neuronas/citología , Células Madre/citología , Telencéfalo/embriología , Animales , Recuento de Células/veterinaria , Células Cultivadas , Femenino , Masculino , Proteína Reelina , Porcinos/embriología , Telencéfalo/citología
19.
Anim Reprod ; 16(3): 508-523, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-32435294

RESUMEN

The veterinary and animal science professions are rapidly developing and their inherent and historical connection to agriculture is challenged by more biomedical and medical directions of research. While some consider this development as a risk of losing identity, it may also be seen as an opportunity for developing further and more sophisticated competences that may ultimately feed back to veterinary and animal science in a synergistic way. The present review describes how agriculture-related studies on bovine in vitro embryo production through studies of putative bovine and porcine embryonic stem cells led the way to more sophisticated studies of human induced pluripotent stem cells (iPSCs) using e.g. gene editing for modeling of neurodegeneration in man. However, instead of being a blind diversion from veterinary and animal science into medicine, these advanced studies of human iPSC-derived neurons build a set of competences that allowed us, in a more competent way, to focus on novel aspects of more veterinary and agricultural relevance in the form of porcine and canine iPSCs. These types of animal stem cells are of biomedical importance for modeling of iPSC-based therapy in man, but in particular the canine iPSCs are also important for understanding and modeling canine diseases, as e.g. canine cognitive dysfunction, for the benefit and therapy of dogs.

20.
Cell Cycle ; 17(23): 2547-2563, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30457474

RESUMEN

Physiologically and anatomically, humans and pigs share many similarities, which make porcine induced pluripotent stem cells (piPSCs) very attractive for modeling human cell therapy as well as for testing safety of iPSC based cell replacement therapies. To date, several integrative and non-integrative strategies have been reported to successfully generate piPSCs, but all resulting piPSCs had integration of transgenes. The use of integrative methods has the disadvantage of potential lack of silencing or inappropriate re-activation of these genes during differentiation, as well as uncertainty regarding disruption of important genomic regions caused by integration. In our study, we performed a non-integrative vector based reprogramming approach using porcine fetal fibroblasts. The resulting four piPSC lines were positive for pluripotency marker and when subjected to in vitro and in vivo differentiation assays, all four lines formed embryoid bodies, capable to differentiate into all three germ layers, and three out of the four cell lines formed teratomas. PCR analysis on genomic and plasmid DNA revealed that the episomal vectors were undetectable in six out of eight subclones derived from one of the piPSC lines (piPSC1) above passage 20. These piPSCs could potentially be ideal cell lines for the generation of porcine in vitro and in vivo models. Furthermore, subsequent analyses of our new transgene independent piPSCs could provide novel insights on the genetic and epigenetic necessities to achieve and maintain piPSCs.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Cariotipo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Porcinos , Teratoma/patología , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA