Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Horm Behav ; 161: 105501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368844

RESUMEN

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Asunto(s)
Anabolizantes , Trastornos de la Memoria , Nandrolona , Ratas Wistar , Testosterona , Animales , Masculino , Testosterona/sangre , Testosterona/análogos & derivados , Ratas , Nandrolona/análogos & derivados , Nandrolona/farmacología , Anabolizantes/efectos adversos , Anabolizantes/farmacología , Trastornos de la Memoria/inducido químicamente , Tamaño de los Órganos/efectos de los fármacos , Acetato de Trembolona/farmacología , Nandrolona Decanoato/farmacología , Peso Corporal/efectos de los fármacos , Corticosterona/sangre , Reconocimiento en Psicología/efectos de los fármacos
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473764

RESUMEN

Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 µM. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound's metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding.


Asunto(s)
Aminopeptidasas , Insulina , Animales , Insulina Regular Humana , Antígenos CD13 , Leucil Aminopeptidasa , Piridinas
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612894

RESUMEN

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Asunto(s)
Aminopeptidasas , Insulina , Ensayos Analíticos de Alto Rendimiento , Insulina Regular Humana , Colorantes , Ácidos Hidroxámicos , Zinc
4.
Curr Issues Mol Biol ; 44(10): 5000-5012, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36286055

RESUMEN

Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.

5.
Bioorg Med Chem ; 65: 116790, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550979

RESUMEN

The syntheses and the AT1R and AT2R binding data of a series of new small molecule ligands are reported. These ligands comprise a phenylthiazole scaffold rather than the biphenyl or phenylthiophene scaffolds found in essentially all of the previously described ligands originating from the nonselective AT1R/AT2R ligand L-162,313 and the AT2R selective agonist C21, the latter now in Phase II/III clinical trials. A phenylthiazole rather than the phenylthiophene scaffold that is present in the AT2R selective agonist C21 and in the AT2R selective antagonist C38 had a deleterious effect on the affinity to AT2R. Nevertheless, a significant improvement could be accomplished by introduction of a small bulky alkyl group in the 2-position of the imidazole ring attached through a methylene group bridge to the phenylthiazole scaffold. Hence, a combination of a 2-tert-butyl or a 2-isopropyl group and a butoxycarbonyl furnished potent AT2R selective ligands. Furthermore, a high affinity ligand derived from L-162,313 and exhibiting a > 35 fold selectivity for AT1R was identified (10). The ligand 21 with the 2-tert-butyl group and âˆ¼ 35 fold selectivity for AT2R, demonstrated high stability in human, rat and mouse liver microsomes and a very attractive profile with regard to the inhibition of common drug-metabolizing CYP enzymes. Thus, very low levels of inhibition of CYP 3A (5%), 2D6 (12%), 2C8 (26%), 2C9 (23%) and 2B6 (24%) were observed with the 2-tert-butyl derivative comprising the methoxycarbonyl sulfonamide function, levels that are significantly lower than those obtained with C21 under the same experimental conditions.


Asunto(s)
Receptor de Angiotensina Tipo 2 , Receptores de Angiotensina , Angiotensina II/química , Angiotensina II/farmacología , Animales , Humanos , Imidazoles , Ligandos , Ratones , Ratas , Receptor de Angiotensina Tipo 2/agonistas , Sulfonamidas , Tiofenos
6.
Bioorg Med Chem ; 66: 116804, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35576659

RESUMEN

Ligands comprising a benzimidazole rather than the imidazole ring that is common in AT2R ligands e.g. in the AT2R agonist C21, can provide both high affinity and receptor selectivity. In particular, compounds encompassing benzimidazoles, substituted in the 2-position with small bulky groups such as an isopropyl (Ki = 4.0 nM) or a tert-butyl (Ki = 5.3 nM) or alternatively a thiazole heterocycle (Ki = 5.1 nM) demonstrate high affinity and AT2R selectivity. An n-butyl chain, as found in the AT1R selective sartans, makes the ligand less receptor selective. The isobutyl group on the biaryl scaffold present in most AT2R selective ligands reported so far was originally derived from the nonselective potent AT1R/AT2R ligand L-162,313. Notably, in all ligands discussed herein, the isobutyl group was substituted by an n-propyl group and ligands with high affinity to AT2R were provided and in addition the majority of them demonstrate a favorable AT2R/AT1R selectivity. The introduction of fluoro atoms in various positions had no pronounced effect on the affinity data. Ligands with a thiazole or a tert-butyl group attached to the 2-position and with a terminal trifluoromethyl butoxycarbonyl sidechain exhibited a similar stability as C21 in human liver microsomes, while other ligands examined were less stable in the microsome assay.


Asunto(s)
Bencimidazoles , Receptor de Angiotensina Tipo 2 , Bencimidazoles/farmacología , Humanos , Imidazoles , Ligandos , Receptor de Angiotensina Tipo 2/agonistas , Sulfonamidas , Tiazoles , Tiofenos
7.
Eur J Neurosci ; 54(4): 5560-5573, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34145943

RESUMEN

In spite of its apparent symmetry, the spinal cord is asymmetric in its reflexes and gene expression patterns including leftward expression bias of the opioid and glutamate genes. To examine whether this is a general phenomenon for neurotransmitter and neurohormonal genes, we here characterized expression and co-expression (transcriptionally coordinated) patterns of genes of the renin-angiotensin system (RAS) that is involved in neuroprotection and pathological neuroplasticity in the left and right lumbar spinal cord. We also tested whether the RAS expression patterns were affected by unilateral brain injury (UBI) that rewired lumbar spinal neurocircuits. The left and right halves of the lumbar spinal cord were analysed in intact rats, and rats with left- or right-sided unilateral cortical injury, and left- or right-sided sham surgery. The findings were (i) lateralized expression of the RAS genes Ace, Agtr2 and Ren with higher levels on the left side; (ii) the asymmetry in coordination of the RAS gene expression that was stronger on the right side; (iii) the decay in coordination of co-expression of the RAS and neuroplasticity-related genes induced by the right-side but not left-side sham surgery and UBI; and (iv) the UBI-induced shift to negative regulatory interactions between RAS and neuroplasticity-related genes on the contralesional spinal side. Thus, the RAS genes may be a part of lateralized gene co-expression networks and have a role in a side-specific regulation of spinal neurocircuits.


Asunto(s)
Lesiones Encefálicas , Renina , Analgésicos Opioides , Angiotensinas , Animales , Ratas , Médula Espinal
8.
Exp Brain Res ; 239(7): 2221-2232, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34021800

RESUMEN

Traumatic brain injury and stroke result in hemiplegia, hemiparesis, and asymmetry in posture. The effects are mostly contralateral; however, ipsilesional deficits may also develop. We here examined whether ablation brain injury and controlled cortical impact (CCI), a rat model of clinical focal traumatic brain injury, both centered over the left or right sensorimotor cortex, induced hindlimb postural asymmetry (HL-PA) with contralesional or ipsilesional limb flexion. The contralesional hindlimb was flexed after left or right side ablation injury. In contrast, both the left and right CCI unexpectedly produced HL-PA with flexion on left side. The flexion persisted after complete spinal cord transection suggesting that CCI triggered neuroplastic processes in lumbar neural circuits enabling asymmetric muscle contraction. Left limb flexion was exhibited under pentobarbital anesthesia. However, under ketamine anesthesia, the body of the left and right CCI rats bent laterally in the coronal plane to the ipsilesional side suggesting that the left and right injury engaged mirror-symmetrical motor pathways. Thus, the effects of the left and right CCI on HL-PA were not mirror-symmetrical in contrast to those of the ablation brain injury, and to the left and right CCI produced body bending. Ipsilateral effects of the left CCI on HL-PA may be mediated by a lateralized motor pathway that is not affected by the left ablation injury. Alternatively, the left-side-specific neurohormonal mechanism that signals from injured brain to spinal cord may be activated by both the left and right CCI but not by ablation injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Traumatismos de la Médula Espinal , Animales , Lateralidad Funcional , Miembro Posterior , Ratas
9.
Bioorg Med Chem ; 29: 115859, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309749

RESUMEN

A series of meta-substituted acetophenone derivatives, encompassing N-(alkyloxycarbonyl)thiophene sulfonamide fragments have been synthesized. Several selective AT2 receptor ligands were identified, among those a tert-butylimidazole derivative (20) with a Ki of 9.3 nM, that demonstrates a high stability in human liver microsomes (t½ = 62 min) and in human hepatocytes (t½ = 194 min). This methyloxycarbonylthiophene sulfonamide is a 20-fold more potent binder to the AT2 receptor and is considerably more stable in human liver microsomes, than a previously reported and broadly studied structurally related AT2R prototype antagonist 3 (C38). Ligand 20 acts as an AT2R agonist and caused an AT2R mediated concentration-dependent vasorelaxation of pre-contracted mouse aorta. Furthermore, in contrast to imidazole derivative C38, the tert-butylimidazole derivative 20 is a poor inhibitor of CYP3A4, CYP2D6 and CYP2C9. It is demonstrated herein that smaller alkyloxycarbonyl groups make the ligands in this series of AT2R selective compounds less prone to degradation and that a high AT2 receptor affinity can be retained after truncation of the alkyloxycarbonyl group. Binding modes of the most potent AT2R ligands were explored by docking calculations combined with molecular dynamics simulations.


Asunto(s)
Receptor de Angiotensina Tipo 2/agonistas , Médula Espinal/efectos de los fármacos , Sulfonamidas/farmacología , Tiofenos/farmacología , Vasodilatación/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hepatocitos/química , Hepatocitos/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Estructura Molecular , Médula Espinal/patología , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Tiofenos/síntesis química , Tiofenos/química
10.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200173

RESUMEN

Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.


Asunto(s)
Encéfalo/metabolismo , Encefalinas/genética , Epigénesis Genética/genética , Precursores de Proteínas/genética , Transcripción Genética/genética , Analgésicos Opioides/metabolismo , Animales , Epigenómica/métodos , Regulación de la Expresión Génica/genética , Humanos , Neuropéptidos/genética
11.
J Neurochem ; 153(4): 485-494, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31556456

RESUMEN

Ethyl2-acetylamino-7-hydroxy-4-pyridin-3-yl-4H-chromene-3-carboxylate (HFI-419), the benzopyran-based inhibitor of insulin-regulated aminopeptidase (IRAP), has previously been shown to improve spatial working and recognition memory in rodents. However, the mechanism of its cognitive-enhancing effect remains unknown. There is a close correlation between dendritic spine density and learning in vivo and several studies suggest that increases in neuronal glucose uptake and/or alterations to the activity of matrix metalloproteinases (MMPs) may improve memory and increase dendritic spine density. We aimed to identify the potential mechanism by which HFI-419 enhances memory by utilizing rat primary cultures of hippocampal cells. Alterations to dendritic spine density were assessed in the presence of varying concentrations of HFI-419 at different stages of hippocampal cell development. In addition, glucose uptake and changes to spine density were assessed in the presence of indinavir, an inhibitor of the glucose transporter 4 (GLUT4 ), or the matrix metalloprotease inhibitor CAS 204140-01-2. We confirmed that inhibition of IRAP activity with HFI-419 enhanced spatial working memory in rats, and determined that this enhancement may be driven by GLUT4 -mediated changes to dendritic spine density. We observed that IRAP inhibition increased dendritic spine density prior to peak dendritic growth in hippocampal neurons, and that spine formation was inhibited when GLUT4 -mediated glucose uptake was blocked. In addition, during the peak phase of dendritic spine growth, the effect of IRAP inhibition on enhancement of dendritic spine density resulted specifically in an increase in the proportion of mushroom/stubby-like spines, a morphology associated with memory and learning. Moreover, these spines were deemed to be functional based on their expression of the pre-synaptic markers vesicular glutamate transporter 1 and synapsin. Overall, or findings suggest that IRAP inhibitors may facilitate memory by increasing hippocampal dendritic spine density via a GLUT4 -mediated mechanism. Cover Image for this issue: doi: 10.1111/jnc.14745.


Asunto(s)
Cistinil Aminopeptidasa/antagonistas & inhibidores , Cistinil Aminopeptidasa/metabolismo , Espinas Dendríticas/metabolismo , Glucosa/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Células Cultivadas , Espinas Dendríticas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
12.
Metabolomics ; 16(1): 12, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31925559

RESUMEN

INTRODUCTION: The abuse of anabolic androgenic steroids (AASs) is a source of public concern because of their adverse effects. Supratherapeutic doses of AASs are known to be hepatotoxic and regulate the lipoproteins in plasma by modifying the metabolism of lipids in the liver, which is associated with metabolic diseases. However, the effect of AASs on the profile of lipids in plasma is unknown. OBJECTIVES: To describe the changes in the plasma lipidome exerted by AASs and to discuss these changes in the light of previous research about AASs and de novo lipogenesis in the liver. METHODS: We treated male Wistar rats with supratherapeutic doses of nandrolone decanoate and testosterone undecanoate. Subsequently, we isolated the blood plasma and performed lipidomics analysis by liquid chromatography-high resolution mass spectrometry. RESULTS: Lipid profiling revealed a decrease of sphingolipids and glycerolipids with palmitic, palmitoleic, stearic, and oleic acids. In addition, lipid profiling revealed an increase in free fatty acids and glycerophospholipids with odd-numbered chain fatty acids and/or arachidonic acid. CONCLUSION: The lipid profile presented herein reports the imprint of AASs on the plasma lipidome, which mirrors the downregulation of de novo lipogenesis in the liver. In a broader perspective, this profile will help to understand the influence of androgens on the lipid metabolism in future studies of diseases with dysregulated lipogenesis (e.g. type 2 diabetes, fatty liver disease, and hepatocellular carcinoma).


Asunto(s)
Lípidos/sangre , Lipogénesis , Hígado/efectos de los fármacos , Nandrolona Decanoato/farmacología , Congéneres de la Testosterona/farmacología , Testosterona/análogos & derivados , Animales , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Testosterona/farmacología
13.
Med Res Rev ; 38(2): 602-624, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28609561

RESUMEN

The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also presented.


Asunto(s)
Receptor de Angiotensina Tipo 2/agonistas , Bibliotecas de Moléculas Pequeñas/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/química , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Humanos , Ligandos
14.
Bioorg Med Chem Lett ; 28(3): 519-522, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29279275

RESUMEN

A series of AT2R ligands have been synthesized applying a quick, simple, and safe transesterification-type reaction whereby the sulfonyl carbamate alkyl tail of the selective AT2R antagonist C38 was varied. Furthermore, a limited number of compounds where acyl sulfonamides and sulfonyl ureas served as carboxylic acid bioisosteres were synthesized and evaluated. By reducing the size of the alkyl chain of the sulfonyl carbamates, ligands 7a and 7b were identified with significantly improved in vitro metabolic stability in both human and mouse liver microsomes as compared to C38 while retaining the AT2R binding affinity and AT2R/AT1R selectivity. Eight of the compounds synthesized exhibit an improved stability in human microsomes as compared to C38.


Asunto(s)
Ésteres/farmacología , Microsomas Hepáticos/química , Receptor de Angiotensina Tipo 2/metabolismo , Sulfonamidas/farmacología , Urea/farmacología , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Humanos , Ligandos , Microsomas Hepáticos/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Urea/análogos & derivados , Urea/química
15.
Bioorg Med Chem Lett ; 28(14): 2446-2450, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29929882

RESUMEN

The dipeptide amide H-Phe-Phe-NH2 (1) that previously was identified as a ligand for the substance P 1-7 (SP1-7) binding site exerts intriguing results in animal models of neuropathic pain after central but not after peripheral administration. The dipeptide 1 is derived from stepwise modifications of the anti-nociceptive heptapeptide SP1-7 and the tetrapeptide endomorphin-2 that is also binding to the SP1-7 site. We herein report a strong anti-allodynic effect of a new H-Phe-Phe-NH2 peptidomimetic (4) comprising an imidazole ring as a bioisosteric element, in the spare nerve injury (SNI) mice model after peripheral administration. Peptidomimetic 4 was stable in plasma, displayed a fair membrane permeability and a favorable neurotoxic profile. Moreover, the effective dose (ED50) of 4 was superior as compared to gabapentin and morphine that are used in clinic.


Asunto(s)
Amidas/farmacología , Dipéptidos/farmacología , Hiperalgesia/tratamiento farmacológico , Imidazoles/farmacología , Peptidomiméticos/farmacología , Nervios Espinales/efectos de los fármacos , Nervios Espinales/lesiones , Amidas/sangre , Amidas/química , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dipéptidos/sangre , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Imidazoles/sangre , Imidazoles/química , Inyecciones Intraperitoneales , Ratones , Estructura Molecular , Peptidomiméticos/sangre , Peptidomiméticos/química , Ratas
16.
Int J Mol Sci ; 19(11)2018 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-30453639

RESUMEN

Evidence to date suggests that opioids such as methadone may be associated with cognitive impairment. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are suggested to be neuroprotective and procognitive in the brain and may therefore counteract these effects. This study aims to explore the protective and restorative effects of GH and IGF-1 in methadone-treated cell cultures. Primary cortical cell cultures were harvested from rat fetuses and grown for seven days in vitro. To examine the protective effects, methadone was co-treated with or without GH or IGF-1 for three consecutive days. To examine the restorative effects, methadone was added for the first 24 h, washed, and later treated with GH or IGF-1 for 48 h. At the end of each experiment, mitochondrial function and membrane integrity were evaluated. The results revealed that GH had protective effects in the membrane integrity assay and that both GH and IGF-1 effectively recovered mitochondrial function and membrane integrity in cells pretreated with methadone. The overall conclusion of the present study is that GH, but not IGF-1, protects primary cortical cells against methadone-induced toxicity, and that both GH and IGF-1 have a restorative effect on cells pretreated with methadone.


Asunto(s)
Hormona de Crecimiento Humana/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Metadona/toxicidad , Sustancias Protectoras/farmacología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas Wistar , Proteínas Recombinantes/farmacología
17.
Mol Pharmacol ; 89(4): 413-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769413

RESUMEN

Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.


Asunto(s)
Cistinil Aminopeptidasa/antagonistas & inhibidores , Cistinil Aminopeptidasa/metabolismo , Espinas Dendríticas/metabolismo , Disulfuros/metabolismo , Compuestos Macrocíclicos/metabolismo , Animales , Células Cultivadas , Cristalografía , Cistinil Aminopeptidasa/análisis , Espinas Dendríticas/química , Disulfuros/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Células HEK293 , Humanos , Compuestos Macrocíclicos/farmacología , Embarazo , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
18.
Med Res Rev ; 35(3): 464-519, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24894913

RESUMEN

The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.


Asunto(s)
Neuropéptidos/química , Peptidomiméticos/química , Analgésicos Opioides/química , Angiotensina II/metabolismo , Angiotensinas/metabolismo , Animales , Bradiquinina/metabolismo , Humanos , Calidina/metabolismo , Ligandos , Ratones , Neuropéptido Y/metabolismo , Nocicepción , Péptidos Opioides/química , Fragmentos de Péptidos , Péptidos , Receptores de Neuropéptido/metabolismo , Receptores Opioides/metabolismo , Taquicininas/metabolismo , Nociceptina
19.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38985004

RESUMEN

A neurological dogma is that the contralateral effects of brain injury are set through crossed descending neural tracts. We have recently identified a novel topographic neuroendocrine system (T-NES) that operates via a humoral pathway and mediates the left-right side-specific effects of unilateral brain lesions. In rats with completely transected thoracic spinal cords, unilateral injury to the sensorimotor cortex produced contralateral hindlimb flexion, a proxy for neurological deficit. Here, we investigated in acute experiments whether T-NES consists of left and right counterparts and whether they differ in neural and molecular mechanisms. We demonstrated that left- and right-sided hormonal signaling is differentially blocked by the δ-, κ- and µ-opioid antagonists. Left and right neurohormonal signaling differed in targeting the afferent spinal mechanisms. Bilateral deafferentation of the lumbar spinal cord abolished the hormone-mediated effects of the left-brain injury but not the right-sided lesion. The sympathetic nervous system was ruled out as a brain-to-spinal cord-signaling pathway since hindlimb responses were induced in rats with cervical spinal cord transections that were rostral to the preganglionic sympathetic neurons. Analysis of gene-gene co-expression patterns identified the left- and right-side-specific gene co-expression networks that were coordinated via the humoral pathway across the hypothalamus and lumbar spinal cord. The coordination was ipsilateral and disrupted by brain injury. These findings suggest that T-NES is bipartite and that its left and right counterparts contribute to contralateral neurological deficits through distinct neural mechanisms, and may enable ipsilateral regulation of molecular and neural processes across distant neural areas along the neuraxis.


Asunto(s)
Transducción de Señal , Animales , Ratas , Sistemas Neurosecretores/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Masculino , Médula Espinal/metabolismo , Lateralidad Funcional/fisiología , Miembro Posterior/inervación
20.
Eur J Med Chem ; 265: 116122, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38199164

RESUMEN

Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.


Asunto(s)
Receptor de Angiotensina Tipo 2 , Sulfonamidas , Ratones , Humanos , Animales , Receptor de Angiotensina Tipo 2/metabolismo , Ligandos , Sulfonamidas/química , Tiofenos/química , Aorta/metabolismo , Angiotensina II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA