Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(27): 276001, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36638285

RESUMEN

The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.

2.
Chemphyschem ; 20(22): 3096-3105, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430013

RESUMEN

Electrochemical reactions depend on the electrochemical interface between the electrode surfaces and the electrolytes. To control and advance electrochemical reactions there is a need to develop realistic simulation models of the electrochemical interface to understand the interface from an atomistic point-of-view. Here we present a method for obtaining thermodynamic realistic interface structures, a procedure we use to derive specific coverages and to obtain ab initio simulated cyclic voltammograms. As a case study, the method and procedure is applied in a matrix study of three Cu facets in three different electrolytes. The results have been validated by direct comparison to experimental cyclic voltammograms. The alkaline (NaOH) cyclic voltammograms are described by H* and OH*, while in neutral medium (KHCO3 ) the CO 3* species are dominating and in acidic (KCl) the Cl* species prevail. An almost one-to-one mapping is observed from simulation to experiments giving an atomistic understanding of the interface structure of the Cu facets. Atomistic understanding of the interface at relevant eletrolyte conditions will further allow realistic modelling of electrochemical reactions of importance for future eletrocatalytic studies.

3.
Phys Chem Chem Phys ; 21(31): 17001-17009, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31346592

RESUMEN

Two local reactivity descriptors computed by Kohn-Sham density functional theory (DFT) are used to predict and rationalize interactions of nucleophilic molecules (exemplified by CO and H2O) with transition metal (TM) and oxide surfaces. The descriptors are the electrostatic potential, VS(r), and the local electron attachment energy, ES(r), evaluated on surfaces defined by the 0.001 e Bohr-3 isodensity contour. These descriptors have previously shown excellent abilities to predict regioselectivity and rank molecular as well as nanoparticle reactivities and interaction affinities. In this study, we generalize the descriptors to fit into the framework of periodic DFT computations. We also demonstrate their capabilities to predict local surface propensity for interaction with Lewis bases. It is shown that ES(r) and VS(r) can rationalize the interaction behavior of TM oxides and of fcc TM surfaces, including low-index, stepped and kinked surfaces spanning a wide range of interaction sites with varied coordination environments. Broad future applicability in surface science is envisaged for the descriptors, including heterogeneous catalysis and electrochemistry.

4.
Phys Chem Chem Phys ; 20(4): 2676-2692, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29319082

RESUMEN

Using local DFT-based probes for electrostatic as well as charge transfer/polarization interactions, we are able to characterize Lewis basic and acidic sites on copper, silver and gold nanoparticles. The predictions obtained using the DFT-probes are compared to the interaction energies of the electron donating (CO, H2O, NH3 and H2S) and the electron accepting (BH3, BF3, HCl [H-down] and Na+) compounds. The probes include the local electron attachment energy [E(r)], the average local ionization energy [I(r)], and the electrostatic potential [V(r)] and are evaluated on isodensity surfaces located at distances corresponding to typical interaction distances. These probes have previously been successful in characterizing molecular interactions. Good correlations are found between Lewis acidity and maxima in V(r), appearing as a consequence of σ-holes, as well as minima in E(r), of the noble metal nanoparticles. Similarly are Lewis basic sites successfully described by surface minima in V(r) and I(r); the former are indicative of σ-lumps, i.e. regions of enhanced σ-density. The investigated probes are anticipated to function as reliable tools in nanoparticle reactivity and interaction characterization, and may act as suitable descriptors in large-scale screenings for materials of specific properties, e.g. in heterogeneous catalysis. Because of the similarity between the noble metal nanoparticle's interactions with Lewis bases and the concepts of halogen and hydrogen bonding, a new class of bonds is introduced - regium bonds - taking place between a σ-hole of a Cu, Ag or Au compound and an electron donor.

5.
J Chem Phys ; 146(24): 244702, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28668016

RESUMEN

Adsorption and desorption of methanol on the (111) and (100) surfaces of Cu2O have been studied using high-resolution photoelectron spectroscopy in the temperature range 120-620 K, in combination with density functional theory calculations and sum frequency generation spectroscopy. The bare (100) surface exhibits a (3,0; 1,1) reconstruction but restructures during the adsorption process into a Cu-dimer geometry stabilized by methoxy and hydrogen binding in Cu-bridge sites. During the restructuring process, oxygen atoms from the bulk that can host hydrogen appear on the surface. Heating transforms methoxy to formaldehyde, but further dehydrogenation is limited by the stability of the surface and the limited access to surface oxygen. The (√3 × âˆš3)R30°-reconstructed (111) surface is based on ordered surface oxygen and copper ions and vacancies, which offers a palette of adsorption and reaction sites. Already at 140 K, a mixed layer of methoxy, formaldehyde, and CHxOy is formed. Heating to room temperature leaves OCH and CHx. Thus both CH-bond breaking and CO-scission are active on this surface at low temperature. The higher ability to dehydrogenate methanol on (111) compared to (100) is explained by the multitude of adsorption sites and, in particular, the availability of surface oxygen.

6.
ACS Catal ; 14(5): 3191-3197, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449533

RESUMEN

We provide experimental evidence that is inconsistent with often proposed Langmuir-Hinshelwood (LH) mechanistic hypotheses for water-promoted CO oxidation over Au-Fe2O3. Passing CO and H2O, but no O2, over Au-γ-Fe2O3 at 25 °C, we observe significant CO2 production, inconsistent with LH mechanistic hypotheses. Experiments with H218O further show that previous LH mechanistic proposals cannot account for water-promoted CO oxidation over Au-γ-Fe2O3. Guided by density functional theory, we instead postulate a water-promoted Mars-van Krevelen (w-MvK) reaction. Our proposed w-MvK mechanism is consistent both with observed CO2 production in the absence of O2 and with CO oxidation in the presence of H218O and 16O2. In contrast, for Au-TiO2, our data is consistent with previous LH mechanistic hypotheses.

7.
Nat Commun ; 13(1): 1399, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35302055

RESUMEN

The electrochemical conversion of carbon di-/monoxide into commodity chemicals paves a way towards a sustainable society but it also presents one of the great challenges in catalysis. Herein, we present the trends in selectivity towards specific dicarbon oxygenate/hydrocarbon products from carbon monoxide reduction on transition metal catalysts, with special focus on copper. We unveil the distinctive role of electrolyte pH in tuning the dicarbon oxygenate/hydrocarbon selectivity. The understanding is based on density functional theory calculated energetics and microkinetic modeling. We identify the critical reaction steps determining selectivity and relate their transition state energies to two simple descriptors, the carbon and hydroxide binding strengths. The atomistic insight gained enables us to rationalize a number of experimental observations and provides avenues towards the design of selective electrocatalysts for liquid fuel production from carbon di-/monoxide.

8.
Science ; 376(6593): 603-608, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511988

RESUMEN

The active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon monoxide (CO2/CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn, or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe the nature of Zn and reaction intermediates during CO2/CO hydrogenation over Zn/ZnO/Cu(211), where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either surface or bulk sensitivity. Hydrogenation of CO2 gives preference to ZnO in the form of clusters or nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates efficient CO2 methanol synthesis.

9.
Nat Commun ; 11(1): 6181, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268768

RESUMEN

Efficient oxygen evolution reaction (OER) electrocatalysts are pivotal for sustainable fuel production, where the Ni-Fe oxyhydroxide (OOH) is among the most active catalysts for alkaline OER. Electrolyte alkali metal cations have been shown to modify the activity and reaction intermediates, however, the exact mechanism is at question due to unexplained deviations from the cation size trend. Our X-ray absorption spectroelectrochemical results show that bigger cations shift the Ni2+/(3+δ)+ redox peak and OER activity to lower potentials (however, with typical discrepancies), following the order CsOH > NaOH ≈ KOH > RbOH > LiOH. Here, we find that the OER activity follows the variations in electrolyte pH rather than a specific cation, which accounts for differences both in basicity of the alkali hydroxides and other contributing anomalies. Our density functional theory-derived reactivity descriptors confirm that cations impose negligible effect on the Lewis acidity of Ni, Fe, and O lattice sites, thus strengthening the conclusions of an indirect pH effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA