Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Breast Cancer Res ; 16(3): R53, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24886537

RESUMEN

INTRODUCTION: Endocrine therapies targeting cell proliferation and survival mediated by estrogen receptor α (ERα) are among the most effective systemic treatments for ERα-positive breast cancer. However, most tumors initially responsive to these therapies acquire resistance through mechanisms that involve ERα transcriptional regulatory plasticity. Herein we identify VAV3 as a critical component in this process. METHODS: A cell-based chemical compound screen was carried out to identify therapeutic strategies against resistance to endocrine therapy. Binding to ERα was evaluated by molecular docking analyses, an agonist fluoligand assay and short hairpin (sh)RNA-mediated protein depletion. Microarray analyses were performed to identify altered gene expression. Western blot analysis of signaling and proliferation markers, and shRNA-mediated protein depletion in viability and clonogenic assays, were performed to delineate the role of VAV3. Genetic variation in VAV3 was assessed for association with the response to tamoxifen. Immunohistochemical analyses of VAV3 were carried out to determine its association with therapeutic response and different tumor markers. An analysis of gene expression association with drug sensitivity was carried out to identify a potential therapeutic approach based on differential VAV3 expression. RESULTS: The compound YC-1 was found to comparatively reduce the viability of cell models of acquired resistance. This effect was probably not due to activation of its canonical target (soluble guanylyl cyclase), but instead was likely a result of binding to ERα. VAV3 was selectively reduced upon exposure to YC-1 or ERα depletion, and, accordingly, VAV3 depletion comparatively reduced the viability of cell models of acquired resistance. In the clinical scenario, germline variation in VAV3 was associated with the response to tamoxifen in Japanese breast cancer patients (rs10494071 combined P value = 8.4 × 10-4). The allele association combined with gene expression analyses indicated that low VAV3 expression predicts better clinical outcome. Conversely, high nuclear VAV3 expression in tumor cells was associated with poorer endocrine therapy response. Based on VAV3 expression levels and the response to erlotinib in cancer cell lines, targeting EGFR signaling may be a promising therapeutic strategy. CONCLUSIONS: This study proposes VAV3 as a biomarker and a rationale for its use as a signaling target to prevent and/or overcome resistance to endocrine therapy in breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/metabolismo , Indazoles/farmacología , Proteínas Proto-Oncogénicas c-vav/genética , Androstadienos/uso terapéutico , Antineoplásicos Hormonales/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Biomarcadores de Tumor/genética , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activadores de Enzimas/farmacología , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Variación Genética , Humanos , Letrozol , Células MCF-7 , Nitrilos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Toremifeno/farmacología , Toremifeno/uso terapéutico , Triazoles/uso terapéutico
2.
BMC Cancer ; 10: 7, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20055993

RESUMEN

BACKGROUND: T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the alpha-cytoplasmic tail of alpha1beta1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. METHODS: We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRbeta and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. RESULTS: From the screen we identified six TCPTP agonists. Two compounds competed with alpha1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to alpha1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRbeta and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. CONCLUSIONS: In this study we showed that small molecules mimicking TCPTP-alpha1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening to identify small molecule PTP activators that could function as RTK antagonists in cells.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Endotelio Vascular/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Integrina alfa1beta1/metabolismo , Ratones , Mitoxantrona/farmacología , Neovascularización Patológica , Fosforilación , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/química , Transducción de Señal , Espermidina/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Carcinogenesis ; 30(6): 1032-40, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19395653

RESUMEN

Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2-160 microg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound.


Asunto(s)
Flavonoides/farmacología , Mitosis/efectos de los fármacos , Huso Acromático/metabolismo , Aurora Quinasa B , Aurora Quinasas , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Activación Enzimática , Flavonoles , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/fisiología , Proteínas de Microfilamentos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/efectos de los fármacos
4.
Int J Cancer ; 123(12): 2774-81, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18798265

RESUMEN

Gene fusions between prostate-specific, androgen responsive TMPRSS2 gene and oncogenic ETS factors, such as ERG, occur in up to 50% of all prostate cancers. We recently defined a gene signature that was characteristic to prostate cancers with ERG activation. This suggested epigenetic reprogramming, such as upregulation of histone deactylase 1 (HDAC1) gene and downregulation of its target genes. We then hypothesized that patients with ERG-positive prostate cancers may benefit from epigenetic therapy such as HDAC inhibition (HDACi), especially in combination with antiandrogens. Here, we exposed ERG-positive prostate cancer cell lines to HDAC inhibitors Trichostatin A (TSA), MS-275 and suberoylanilide hydroxamic acid (SAHA) with or without androgen deprivation. We explored the effects on cell phenotype, gene expression as well as ERG and androgen receptor (AR) signaling. When compared with 5 other prostate cell lines, ERG-positive VCaP and DuCap cells were extremely sensitive to HDACi, in particular TSA, showing synergy with concomitant androgen deprivation increasing apoptosis. Both of the HDAC inhibitors studied caused repression of the ERG-fusion gene, whereas the pan-HDAC inhibitor TSA prominently repressed the ERG-associated gene signature. Additionally, HDACi and flutamide caused retention of AR in the cytoplasm, indicating blockage of androgen signaling. Our results support the hypothesis that HDACi, especially in combination with androgen deprivation, is effective against TMPRSS2-ERG-fusion positive prostate cancer in vitro. Together with our previous in vivo observations of an "epigenetic reprogramming gene signature" in clinical ERG-positive prostate cancers, these studies provide mechanistic insights to ERG-associated tumorigenesis and suggest therapeutic paradigms to be tested in vivo.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Antineoplásicos Hormonales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzamidas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/farmacología , Proteínas de Fusión Oncogénica/análisis , Neoplasias de la Próstata/química , Neoplasias de la Próstata/tratamiento farmacológico , Piridinas/farmacología , Anilidas/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/análisis , Western Blotting , Línea Celular Tumoral , Sinergismo Farmacológico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Masculino , Nitrilos/farmacología , Reacción en Cadena de la Polimerasa/métodos , Inhibidores de la Síntesis de la Proteína/farmacología , Receptores Androgénicos/genética , Compuestos de Tosilo/farmacología , Regulación hacia Arriba
5.
Cell Rep ; 23(13): 3946-3959.e6, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949776

RESUMEN

Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Neutrófilos/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Antígeno CD47/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Receptores de IgG/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Trasplante Homólogo
6.
Oncotarget ; 8(43): 73925-73937, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29088757

RESUMEN

Treatment of advanced head and neck squamous cell carcinoma (HNSCC) is plagued by low survival and high recurrence rates, despite multimodal therapies. Presently, cisplatin or cetuximab is used in combination with radiotherapy which has resulted in minor survival benefits but increased severe toxicities relative to RT alone. This underscores the urgent need for improved tumor-specific radiosensitizers for better control with lower toxicities. In a small molecule screen targeting kinases, performed on three HNSCC cell lines, we identified GSK635416A as a novel radiosensitizer. The extent of radiosensitization by GSK635416A outperformed the radiosensitization observed with cisplatin and cetuximab in our models, while exhibiting virtually no cytotoxicity in the absence of radiation and in normal fibroblast cells. Radiation induced phosphorylation of ATM was inhibited by GSK635416A. GSK63541A increased DNA double strand breaks after radiation and GSK63541A mediated radiosensitization was lacking in ATM-mutated cells thereby further supporting the ATM inhibiting properties of GSK63541A. As a novel ATM inhibitor with highly selective radiosensitizing activity, GSK635416A holds promise as a lead in the development of drugs active in potentiating radiotherapy for HNSCC and other cancer types.

7.
Eur Urol ; 71(6): 858-862, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28108151

RESUMEN

Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.


Asunto(s)
Aminopiridinas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzamidas/farmacología , Carcinoma/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Morfolinas/farmacología , Mutación , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Urotelio/efectos de los fármacos , Animales , Carcinoma/enzimología , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Ratones Desnudos , Terapia Molecular Dirigida , Interferencia de ARN , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Urotelio/enzimología , Urotelio/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 7(28): 42859-42872, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27374095

RESUMEN

Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Sinergismo Farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Células HEK293 , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Interferencia de ARN , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
9.
Biosci Rep ; 35(2)2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25757360

RESUMEN

Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca(2+) ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)-Akt (protein kinase B) pathway, the Jak-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the Raf-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation.


Asunto(s)
Ionóforos de Calcio/farmacología , Micropartículas Derivadas de Células/metabolismo , Eritrocitos/metabolismo , Ionomicina/farmacología , Quinasa de la Caseína II/metabolismo , Senescencia Celular/efectos de los fármacos , Eritrocitos/citología , Humanos , Quinasas raf/metabolismo
10.
Mol Cancer Ther ; 13(5): 1054-66, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24748653

RESUMEN

Mitosis is an attractive target for the development of new anticancer drugs. In a search for novel mitotic inhibitors, we virtually screened for low molecular weight compounds that would possess similar steric and electrostatic features, but different chemical structure than rigosertib (ON 01910.Na), a putative inhibitor of phosphoinositide 3-kinase (PI3K) and polo-like kinase 1 (Plk1) pathways. Highest scoring hit compounds were tested in cell-based assays for their ability to induce mitotic arrest. We identified a novel acridinyl-acetohydrazide, here named as Centmitor-1 (Cent-1), that possesses highly similar molecular interaction field as rigosertib. In cells, Cent-1 phenocopied the cellular effects of rigosertib and caused mitotic arrest characterized by chromosome alignment defects, multipolar spindles, centrosome fragmentation, and activated spindle assembly checkpoint. We compared the effects of Cent-1 and rigosertib on microtubules and found that both compounds modulated microtubule plus-ends and reduced microtubule dynamics. Also, mitotic spindle forces were affected by the compounds as tension across sister kinetochores was reduced in mitotic cells. Our results showed that both Cent-1 and rigosertib target processes that occur during mitosis as they had immediate antimitotic effects when added to cells during mitosis. Analysis of Plk1 activity in cells using a Förster resonance energy transfer (FRET)-based assay indicated that neither compound affected the activity of the kinase. Taken together, these findings suggest that Cent-1 and rigosertib elicit their antimitotic effects by targeting mitotic processes without impairment of Plk1 kinase activity.


Asunto(s)
Acridonas/farmacología , Antimitóticos/farmacología , Glicina/análogos & derivados , Hidrazinas/farmacología , Sulfonas/farmacología , Acridonas/química , Antimitóticos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Centrosoma/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Glicina/química , Glicina/farmacología , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrazinas/química , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Estructura Molecular , Peso Molecular , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Sulfonas/química , Quinasa Tipo Polo 1
11.
Cell Rep ; 7(1): 86-93, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24685132

RESUMEN

There are no effective therapies for the ~30% of human malignancies with mutant RAS oncogenes. Using a kinome-centered synthetic lethality screen, we find that suppression of the ERBB3 receptor tyrosine kinase sensitizes KRAS mutant lung and colon cancer cells to MEK inhibitors. We show that MEK inhibition results in MYC-dependent transcriptional upregulation of ERBB3, which is responsible for intrinsic drug resistance. Drugs targeting both EGFR and ERBB2, each capable of forming heterodimers with ERBB3, can reverse unresponsiveness to MEK inhibition by decreasing inhibitory phosphorylation of the proapoptotic proteins BAD and BIM. Moreover, ERBB3 protein level is a biomarker of response to combinatorial treatment. These data suggest a combination strategy for treating KRAS mutant colon and lung cancers and a way to identify the tumors that are most likely to benefit from such combinatorial treatment.


Asunto(s)
Neoplasias del Colon/enzimología , Neoplasias Pulmonares/enzimología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Receptor ErbB-3/biosíntesis , Proteínas ras/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Desnudos , Mutación , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
12.
Clin Cancer Res ; 15(19): 6070-8, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19789329

RESUMEN

PURPOSE: To identify novel therapeutic opportunities for patients with prostate cancer, we applied high-throughput screening to systematically explore most currently marketed drugs and drug-like molecules for their efficacy against a panel of prostate cancer cells. EXPERIMENTAL DESIGN: We carried out a high-throughput cell-based screening with proliferation as a primary end-point using a library of 4,910 drug-like small molecule compounds in four prostate cancer (VCaP, LNCaP, DU 145, and PC-3) and two nonmalignant prostate epithelial cell lines (RWPE-1 and EP156T). The EC(50) values were determined for each cell type to identify cancer selective compounds. The in vivo effect of disulfiram (DSF) was studied in VCaP cell xenografts, and gene microarray and combinatorial studies with copper or zinc were done in vitro for mechanistic exploration. RESULTS: Most of the effective compounds, including antineoplastic agents, were nonselective and found to inhibit both cancer and control cells in equal amounts. In contrast, histone deacetylase inhibitor trichostatin A, thiram, DSF, and monensin were identified as selective antineoplastic agents that inhibited VCaP and LNCaP cell proliferation at nanomolar concentrations. DSF reduced tumor growth in vivo, induced metallothionein expression, and reduced DNA replication by downregulating MCM mRNA expression. The effect of DSF was potentiated by copper in vitro. CONCLUSIONS: We identified three novel cancer-selective growth inhibitory compounds for human prostate cancer cells among marketed drugs. We then validated DSF as a potential prostate cancer therapeutic agent. These kinds of pharmacologically well-known molecules can be readily translated to in vivo preclinical studies and clinical trials.


Asunto(s)
Carcinoma/patología , Proliferación Celular/efectos de los fármacos , Disulfiram/farmacología , Neoplasias de la Próstata/patología , Animales , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Células Cultivadas , Disulfiram/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Masculino , Ratones , Ratones Desnudos , Modelos Biológicos , Bibliotecas de Moléculas Pequeñas/análisis , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Biochemistry ; 44(10): 4004-10, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15751976

RESUMEN

Family II inorganic pyrophosphatases (PPases) have been recently found in a variety of bacteria. Their primary and tertiary structures differ from those of the well-known family I PPases, although both have a binuclear metal center directly involved in catalysis. Here, we examined the effects of mutating one Glu, four His, and five Asp residues forming or close to the metal center on Mn(2+) binding affinity, catalysis, oligomeric structure, and thermostability of the family II PPase from Bacillus subtilis (bsPPase). Mutations H9Q, D13E, D15E, and D75E in two metal-binding subsites caused profound (10(4)- to 10(6)-fold) reductions in the binding affinity for Mn(2+). Most of the mutations decreased k(cat) for MgPP(i) by 2-3 orders of magnitude when measured with Mn(2+) or Mg(2+) bound to the high-affinity subsite and Mg(2+) bound to both the low-affinity subsite and pyrophosphate. In the E78D variant, the k(cat) for the Mn-bound enzyme was decreased 120-fold, converting bsPPase from an Mn-specific to an Mg-specific enzyme. K(m) values were less affected by the mutations, and, interestingly, were decreased in most cases. Mutations of His(97) and His(98) residues, which lie near the subunit interface, greatly destabilized the bsPPase dimer, whereas most other mutations stabilized it. Mn(2+), in sharp contrast to Mg(2+), conferred high thermostability to wild-type bsPPase, although this effect was reduced by all of the mutations except D203E. These results indicate that family II PPases have a more integrated active site structure than family I PPases and are consequently more sensitive to conservative mutations.


Asunto(s)
Sustitución de Aminoácidos/genética , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Dominio Catalítico/genética , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Magnesio/metabolismo , Manganeso/metabolismo , Sitios de Unión/genética , Cationes Bivalentes/metabolismo , Secuencia Conservada/genética , Dimerización , Estabilidad de Enzimas/genética , Pirofosfatasa Inorgánica/antagonistas & inhibidores , Pirofosfatasa Inorgánica/química , Cinética , Magnesio/química , Manganeso/química , Mutagénesis Sitio-Dirigida , Desnaturalización Proteica/genética , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Termodinámica
14.
Biochemistry ; 41(40): 12025-31, 2002 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-12356302

RESUMEN

Soluble inorganic pyrophosphatase (PPase), which converts inorganic pyrophosphate (PP(i)) into usable phosphate, is almost universally present as a central enzyme of phosphorus metabolism and uses divalent metal ion as a necessary cofactor. PPase from Saccharomyces cerevisiae (Y-PPase) is the best studied with respect to both structure and mechanism. Here we report the first combined use of stopped flow and quenched flow techniques to study the PPase reaction in both the forward (PP(i) hydrolysis) and back (PP(i) synthesis) directions. The results of these studies permit direct comparison of different divalent metal-ion effects (Mg(2+), Mn(2+), Co(2+)) on microscopic rate constants at pH 7.0. For the Mn-enzyme, on which all of the high-resolution X-ray studies have been conducted, they demonstrate that the rate-determining step changes as a function of pH, from hydrolysis of enzyme-bound PP(i) at low pH to release of the more tightly bound P(i) at high pH. They also provide evidence for two kinetically important forms of the product complex EM(4)(P(i))(2), supporting an earlier suggestion based on crystallographic evidence, and allow informed speculation as to the identities of acidic and basic groups essential for optimal PPase catalytic activity.


Asunto(s)
Pirofosfatasas/metabolismo , Saccharomyces cerevisiae/enzimología , Cobalto/metabolismo , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica , Cinética , Manganeso/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA