Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628427

RESUMEN

(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator. (2) Methods: To improve delivery of IL-22 to the irradiated intestine, we gavaged Lactobacillus-reuteri as a platform for the second-generation probiotic Lactobacillus-reuteri-Interleukin-22 (LR-IL-22). (3) Results: There was effective radiation mitigation by gavage of LR-IL-22 at 24 h after intestinal irradiation. Multiple biomarkers of radiation damage to the intestine, immune system and bone marrow were improved by LR-IL-22 compared to the gavage of control LR or intraperitoneal injection of IL-22 protein. (4) Conclusions: Oral administration of LR-IL-22 is an effective protector and mitigator of intestinal irradiation damage.


Asunto(s)
Limosilactobacillus reuteri , Probióticos , Protección Radiológica , Células Endoteliales , Interleucinas , Mucosa Intestinal/metabolismo , Intestinos , Interleucina-22
2.
Radiat Res ; 196(3): 235-249, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34087939

RESUMEN

We defined the time course of ionizing radiation-induced senescence in lung compared to bone marrow of p16+/LUC mice in which the senescence-induced biomarker (p16) is linked to a luciferase reporter gene. Periodic in situ imaging revealed increased luciferase activity in the lungs of 20 Gy thoracic irradiated, but not 8 Gy total-body irradiated (TBI) mice beginning at day 75 and increasing to day 170. In serial sections of explanted lungs, senescent cells appeared in the same areas as did fibrosis in the 20 Gy thoracic irradiated, but not the 8 Gy TBI group. Lungs from 8 Gy TBI mice at one year did show increased RNA levels for p16, p21, p19 and TGF-ß. Individual senescent cells in 20 Gy irradiated mouse lung included those with epithelial, endothelial, fibroblast and hematopoietic cell biomarkers. Rare senescent cells in the lungs of 8 Gy TBI mice at one year were of endothelial phenotype. Long-term bone marrow cultures (LTBMCs) were established at either day 60 or one year after 8 Gy TBI. In freshly removed marrow at both times after irradiation, there were increased senescent cells. In LTBMCs, there were increased senescent cells in both weekly harvested single cells and in colonies of multilineage hematopoietic progenitor cells producing CFU-GEMM (colony forming unit-granulocyte, erythrocyte, monocyte/macrophage, mega-karyocyte) that were formed in secondary cultures when these single cells were plated in semisolid media. LTBMCs from TBI mice produced fewer CFU-GEMM; however, the relative percentage of senescent cell-containing colonies was increased as measured by both p16-luciferase and ß-galactosidase. Therefore, 20 Gy thoracic radiation, as well as 8 Gy TBI, induces senescent cells in the lungs. With bone marrow, 8 Gy TBI induced senescence in both hematopoietic cells and in colony-forming progenitors. The p16+/LUC mouse strain provides a valuable system in which to compare the kinetics of radiation-induced senescence between organs in vivo, and to evaluate the potential role of senescent cells in irradiation pulmonary fibrosis.


Asunto(s)
Médula Ósea/efectos de la radiación , Senescencia Celular/efectos de la radiación , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Células Madre Hematopoyéticas/efectos de la radiación , Pulmón/efectos de la radiación , Células Madre Multipotentes/efectos de la radiación , Irradiación Corporal Total/efectos adversos , Animales , Linaje de la Célula , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Genes p16 , Luciferasas/genética , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/etiología , Traumatismos Experimentales por Radiación/etiología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA