Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 147(1): 90, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771530

RESUMEN

Multiple sclerosis (MS) is a heterogeneous neurological disorder with regards to clinical presentation and pathophysiology. Here, we investigated the heterogeneity of MS by performing an exploratory factor analysis on quantitative and qualitative neuropathology data collected for 226 MS donors in the Netherlands Brain Bank autopsy cohort. Three promising dimensions were identified and subsequently validated with clinical, neuropathological, and genetic data. Dimension 1 ranged from a predominance of remyelinated and inactive lesions to extensive pathological changes, higher proportions of active and mixed lesions, and foamy microglia morphology. This pattern was positively correlated with more severe disease, the presence of B and T cells, and neuroaxonal damage. Scoring high on dimension 2 was associated with active lesions, reactive sites, and the presence of nodules. These donors had less severe disease, a specific pattern of cortical lesions, and MS risk variants in the human leukocyte antigen region, the latter indicating a connection between disease onset and this neuropathological dimension. Donors scoring high on dimension 3 showed increased lesional pathology with relatively more mixed and inactive lesions and ramified microglia morphology. This pattern was associated with longer disease duration, subpial cortical lesions, less involvement of the adaptive immune system, and less axonal damage. Taken together, the three dimensions may represent (1) demyelination and immune cell activity associated with pathological and clinical progression, (2) microglia (re)activity and possibly lesion initiation, and (3) loss of lesion activity and scar formation. Our findings highlight that a thorough understanding of the interplay between multiple pathological characteristics is crucial to understand the heterogeneity of MS pathology, as well as its association with genetic predictors and disease outcomes. The scores of donors on the dimensions can serve as an important starting point for further disentanglement of MS heterogeneity and translation into observations and interventions in living cohorts with MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Masculino , Femenino , Esclerosis Múltiple/patología , Persona de Mediana Edad , Adulto , Anciano , Microglía/patología , Encéfalo/patología , Bancos de Tejidos , Países Bajos , Autopsia , Estudios de Cohortes , Anciano de 80 o más Años
2.
Handb Clin Neurol ; 202: 7-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39111919

RESUMEN

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), which can clinically manifest as attacks of neurologic disability and new lesion formation, and a progression of sustained neurologic disability over time. In MS, activated B and T cells are recruited from outside the CNS, and contribute to inflammation, demyelination, and tissue damage inside the brain parenchyma. In the last decades, the treatment of MS has improved by the introduction of several disease-modifying therapies (DMTs). These drugs target generic mechanisms of lymphocyte activation and recruitment or deplete lymphocyte fractions from the circulation. This contributes to a suppression of relapses and new MS lesion formation on MRI. However, the impact on disability progression without relapses is much more variable. In addition, risk mitigation strategies are warranted to control for unwanted side effects of the attenuated immune competence induced by DMTs. In this chapter, we argue that an understanding of the impact of these DMTs on B and T cells both outside and inside the CNS can help to understand the benefits of these therapies but can also help to identify the challenges and opportunities that lie ahead for future MS therapies.


Asunto(s)
Linfocitos B , Esclerosis Múltiple , Linfocitos T , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos T/inmunología , Factores Inmunológicos/uso terapéutico , Animales
3.
Neurosci Insights ; 19: 26331055241252632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737296

RESUMEN

Inflammation is a prominent hypothesis in the neurobiology of depression. In our transcriptomic profiling study of microglia in chronic major depressive disorder (MDD), we revealed a distinct disease-associated microglia (DAM) transcriptomic profile exclusively found in cortical gray matter, that we have designated DepDAM. These DepDAM revealed an immune-suppressed state, with a possible upstream mechanism for microglial suppression, by upregulation of CD200 and CD47 ("don't eat me signals") located on synapses. We extensively report on disease characteristics, such as cause of death, reason for euthanasia, and psychiatric state when deceased. When excluding MDD donors in a euthymic state, the trend of lower CD45 membrane expression on white matter microglia became significant, and the difference in gray matter microglia became larger. For Western blot analysis of CD47 and CD200, both means of the definitely depressed donor groups (MDD-D) increased. This underscores the utmost importance of reporting on patient and episode characteristics, such as severity, episode traits, (type of) suicidality, mode of decease, and state of illness at death in post-mortem- and biological psychiatric research. For psychiatric post-mortem research, we suggest using well-characterized donors (eg, after "psychological autopsy") selected by an experienced clinician.

4.
Brain Commun ; 6(4): fcae264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175944

RESUMEN

Control of microglia activity through CD200-CD200R and CD47-SIRPα interactions has been implicated in brain homeostasis. Here, we assessed CD200, CD47, CD200R and SIRPα expression with qPCR and immunohistochemistry in multiple sclerosis (MS) normal-appearing cortical grey matter (NAGM), normal-appearing white matter (NAWM), cortical grey matter (GM) lesions and perilesional GM, and compared this to control GM and white matter (WM), to investigate possible altered control of microglia in MS. In MS NAGM, CD200 expression is lower compared with control GM, specifically in cortical layers 1 and 2, and CD200 expression in NAGM negatively correlates with the cortical lesion rate. Interestingly, NAGM and NAWM CD200 expression is positively correlated, and NAGM CD200 expression negatively correlates with the proportion of active and mixed WM lesions. In GM lesions, CD200 and CD47 expressions are lower compared with NAGM and perilesional GM. CD200R expression is lower in MS NAGM, whereas SIRPα was increased in and around GM lesions. Taken together, our data indicate that CD200 and CD47 play a role in GM MS lesion formation and progression, respectively, and that targeting CD200 pathways may offer therapeutic avenues to mitigate MS pathology in both WM and GM.

5.
Nat Commun ; 15(1): 1667, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396116

RESUMEN

Microglia nodules (HLA-DR+ cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology. Compared to microglia nodules in stroke, those in MS show enhanced expression of genes previously found upregulated in MS lesions. Furthermore, genes associated with lipid metabolism, presence of T and B cells, production of immunoglobulins and cytokines, activation of the complement cascade, and metabolic stress are upregulated in microglia nodules in MS. Compared to stroke, they more frequently phagocytose oxidized phospholipids and possess a more tubular mitochondrial network. Strikingly, in MS, some microglia nodules encapsulate partially demyelinated axons. Taken together, we propose that activation of microglia nodules in MS by cytokines and immunoglobulins, together with phagocytosis of oxidized phospholipids, may lead to a microglia phenotype prone to MS lesion formation.


Asunto(s)
Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Humanos , Esclerosis Múltiple/patología , Microglía/metabolismo , Enfermedades del Sistema Nervioso/patología , Accidente Cerebrovascular/patología , Citocinas/metabolismo , Inmunoglobulinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA