Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30530543

RESUMEN

A multi-wire proportional chamber-based muo- graphy observatory is under development for the monitoring of the internal structure of Mt Sakurajima in Kyushu, Japan. We investigated the limits of large-scale and high-definition muography. We adjusted the parameters of a modified Gaisser model and found that the spectral index of γ = - 2.64 and normalization factor of C = 0.66 reproduce more accurately the measured fluxes than the original parameters at large thickness. A thickness and zenith angle-dependent correction is suggested to the measured muon flux due to the energy cut which is introduced to suppress the background particles. The multiple scattering of muons was simulated across the standard rock and sea-level atmosphere up to the distance of 5 km. We found that multiple scattering decreases from 10 mrad to 4 mrad across the rock due to the decrease in the steepness of muon spectra. The multiple scattering falls down to about 2 mrad after the object in the atmosphere due to the increase in observed arrival zenith angles. The 2 m2 sized multi-wire proportional chamber-based Muographic Observation System (MMOS) was operating between February and June 2018. Three tracking systems operated reliably with tracking efficiencies of above 95%. The muon flux has been measured correctly down to 10-3 m-2 sr-1 s-1 The average density map of Mt Sakurajima has been measured with angular resolution of 12 mrad × 12 mrad (spatial resolution of 34 m × 34 m from the distance of 2.8 km). The average density values were found between 1.4 and 2 g cm-3, except at the crater regions where lower densities were observed.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

2.
Sci Rep ; 11(1): 17729, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489492

RESUMEN

Post-eruptive destabilization of volcanic edifices by gravity driven debris flows or erosion can catastrophically impact the landscapes, economies and human societies surrounding active volcanoes. In this work, we propose cosmic-ray muon imaging (muography) as a tool for the remote monitoring of hydrogeomorphic responses to volcano landscape disturbances. We conducted the muographic monitoring of Sakurajima volcano, Kyushu, Japan and measured continuous post-eruptive activity with over 30 lahars per year. The sensitive surface area of the Multi-Wire-Proportional-Chamber-based Muography Observation System was upgraded to 7.67 m[Formula: see text]; this made it possible for the density of tephra within the crater region to be measured in 40 days. We observed the muon flux decrease from 10 to 40% through the different regions of the crater from September 2019 to October 2020 due to the continuous deposition of tephra fallouts. In spite of the long-term mass increase, significant mass decreases were also observed after the onsets of rain-triggered lahars that induced the erosion of sedimented tephra. The first muographic observation of these post-eruptive phenomena demonstrate that this passive imaging technique has the potential to contribute to the assessment of indirect volcanic hazards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA