Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(49): 31177-31188, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33219123

RESUMEN

A transplanted stem cell's engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell's "pathotropism." Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12-CXCR4 coupling. Alternatively, we chemically "mutated" CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a "designer" cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., "inflammo-attraction").


Asunto(s)
Quimiocina CXCL12/genética , Neuronas/metabolismo , Unión Proteica/genética , Receptores CXCR4/genética , Astrocitos/metabolismo , Astrocitos/patología , Movimiento Celular/genética , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , Células Madre Pluripotentes Inducidas , Inflamación/genética , Ligandos , Mutagénesis/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Neuronas/patología
2.
J Neuroinflammation ; 19(1): 281, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36403074

RESUMEN

BACKGROUND: The long-term functional recovery of traumatic brain injury (TBI) is hampered by pathological events, such as parenchymal neuroinflammation, neuronal death, and white matter injury. Krüppel-like transcription factor 11 (KLF 11) belongs to the zinc finger family of transcription factors and actively participates in various pathophysiological processes in neurological disorders. Up to now, the role and molecular mechanisms of KLF11 in regulating the pathogenesis of brain trauma is poorly understood. METHODS: KLF11 knockout (KO) and wild-type (WT) mice were subjected to experimental TBI, and sensorimotor and cognitive functions were evaluated by rotarod, adhesive tape removal, foot fault, water maze, and passive avoidance tests. Brain tissue loss/neuronal death was examined by MAP2 and NeuN immunostaining, and Cresyl violet staining. White matter injury was assessed by Luxol fast blue staining, and also MBP/SMI32 and Caspr/Nav1.6 immunostaining. Activation of cerebral glial cells and infiltration of blood-borne immune cells were detected by GFAP, Iba-1/CD16/32, Iba-1/CD206, Ly-6B, and F4/80 immunostaining. Brian parenchymal inflammatory cytokines were measured with inflammatory array kits. RESULTS: Genetic deletion of KLF11 worsened brain trauma-induced sensorimotor and cognitive deficits, brain tissue loss and neuronal death, and white matter injury in mice. KLF11 genetic deficiency in mice also accelerated post-trauma astrocytic activation, promoted microglial polarization to a pro-inflammatory phenotype, and increased the infiltration of peripheral neutrophils and macrophages into the brain parenchyma. Mechanistically, loss-of-KLF11 function was found to directly increase the expression of pro-inflammatory cytokines in the brains of TBI mice. CONCLUSION: KLF11 acts as a novel protective factor in TBI. KLF11 genetic deficiency in mice aggravated the neuroinflammatory responses, grey and white matter injury, and impaired long-term sensorimotor and cognitive recovery. Elucidating the functional importance of KLF11 in TBI may lead us to discover novel pharmacological targets for the development of effective therapies against brain trauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Ratones , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/patología , Lesiones Encefálicas/metabolismo , Citocinas/genética , Factores de Transcripción de Tipo Kruppel/genética
3.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299322

RESUMEN

Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA's thrombolytic role within the vasculature is beneficial, tPA's non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA's detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.


Asunto(s)
Accidente Cerebrovascular Isquémico/terapia , Células-Madre Neurales/trasplante , Trasplante de Células Madre/métodos , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Fibrinolíticos/administración & dosificación , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Metaloendopeptidasas/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/terapia , Trasplante de Células Madre/tendencias , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia , Activador de Tejido Plasminógeno/uso terapéutico
4.
Am J Physiol Heart Circ Physiol ; 319(4): H730-H743, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32795184

RESUMEN

Insulin-like growth factor-1 (IGF-1) decreases atherosclerosis in apolipoprotein E (Apoe)-deficient mice when administered systemically. However, mechanisms for its atheroprotective effect are not fully understood. We generated endothelium-specific IGF-1 receptor (IGF1R)-deficient mice on an Apoe-deficient background to assess effects of IGF-1 on the endothelium in the context of hyperlipidemia-induced atherosclerosis. Endothelial deficiency of IGF1R promoted atherosclerotic burden, when animals were fed on a high-fat diet for 12 wk or normal chow for 12 mo. Under the normal chow feeding condition, the vascular relaxation response to acetylcholine was increased in the endothelial IGF1R-deficient aorta; however, feeding of a high-fat diet substantially attenuated the relaxation response, and there was no difference between endothelial IGF1R-deficient and control mice. The endothelium and its intercellular junctions provide a barrier function to the vasculature. In human aortic endothelial cells, IGF-1 upregulated occludin, claudin 5, VE-cadherin, JAM-A, and CD31 expression levels, and vice versa, specific IGF1R inhibitor, picropodophyllin, an IGF1R-neutralizing antibody (αIR3), or siRNA to IGF1R abolished the IGF-1 effects on junction and adherens proteins, suggesting that IGF-1 promoted endothelial barrier function. Moreover, endothelial transwell permeability assays indicated that inhibition of IGF-1 signaling elevated solute permeability through the monolayer of human aortic endothelial cells. In summary, endothelial IGF1R deficiency increases atherosclerosis, and IGF-1 positively regulates tight junction protein and adherens junction protein levels and endothelial barrier function. Our findings suggest that the elevation of the endothelial junction protein level is, at least in part, the mechanism for antiatherogenic effects of IGF-1.NEW & NOTEWORTHY Endothelial insulin-like growth factor-1 (IGF-1) receptor deficiency significantly elevated atherosclerotic burden in apolipoprotein E-deficient mice, mediated at least in part by downregulation of intercellular junction proteins and, thus, elevated endothelial permeability. This study revealed a novel role for IGF-1 in supporting endothelial barrier function. These findings suggest that IGF-1's ability to promote endothelial barrier function may offer a novel therapeutic strategy for vascular diseases such as atherosclerosis.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Receptor IGF Tipo 1/deficiencia , Animales , Antígenos CD/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Cadherinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/patología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Placa Aterosclerótica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Células THP-1 , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
5.
J Neurosci ; 37(7): 1797-1806, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28093478

RESUMEN

The study was designed to determine the role of long noncoding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (Malat1), in ischemic stroke outcome. Primary mouse brain microvascular endothelial cells (BMECs) were cultured and treated with Malat1 GapmeR before 16 h oxygen and glucose depravation (OGD). Cell death was assayed by LDH and MTT methods. Malat1 knock-out and wild-type mice were subjected to 1 h of middle cerebral artery occlusion (MCAO) and 24-72 h of reperfusion. To explore the underlying mechanism, apoptotic and inflammatory factors were measured by qPCR, ELISA, and Western blotting. The physical interaction between Malat1 and apoptotic or inflammatory factors was measured by RNA immunoprecipitation. Increased Malat1 levels were found in cultured mouse BMECs after OGD as well as in isolated cerebral microvessels in mice after MCAO. Silencing of Malat1 by Malat1 GapmeR significantly increased OGD-induced cell death and Caspase 3 activity in BMECs. Silencing of Malat1 also significantly aggravated OGD-induced expression of the proapoptotic factor Bim and proinflammatory cytokines MCP-1, IL-6, and E-selectin. Moreover, Malat1 KO mice presented larger brain infarct size, worsened neurological scores, and reduced sensorimotor functions. Consistent with in vitro findings, significantly increased expression of proapoptotic and proinflammatory factors was also found in the cerebral cortex of Malat1 KO mice after ischemic stroke compared with WT controls. Finally, we demonstrated that Malat1 binds to Bim and E-selectin both in vitro and in vivo Our study suggests that Malat1 plays critical protective roles in ischemic stroke.SIGNIFICANCE STATEMENT Accumulative studies have demonstrated the important regulatory roles of microRNAs in vascular and neural damage after ischemic stroke. However, the functional significance and mechanisms of other classes of noncoding RNAs in cerebrovascular pathophysiology after stroke are less studied. Here we demonstrate a novel role of Malat1, a long noncoding RNA that has been originally identified as a prognostic marker for non-small cell lung cancer, in cerebrovascular pathogenesis of ischemic stroke. Our experiments have provided the first evidence that Malat1 plays anti-apoptotic and anti-inflammatory roles in brain microvasculature to reduce ischemic cerebral vascular and parenchymal damages. Our studies also suggest that lncRNAs can be therapeutically targeted to minimize poststroke brain damage.


Asunto(s)
Encéfalo/patología , Regulación de la Expresión Génica/genética , Infarto de la Arteria Cerebral Media/patología , Microvasos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Apoptosis/genética , Infarto Encefálico/etiología , Muerte Celular/genética , Hipoxia de la Célula/fisiología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/genética , Glucosa/deficiencia , Infarto de la Arteria Cerebral Media/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Largo no Codificante/genética , Daño por Reperfusión , Factores de Tiempo
6.
Am J Physiol Heart Circ Physiol ; 314(6): H1137-H1152, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29350999

RESUMEN

Abdominal aortic aneurysm (AAA) is a vascular disorder with a high case fatality rate in the instance of rupture. AAA is a multifactorial disease, and the etiology is still not fully understood. AAA is more likely to occur in men, but women have a greater risk of rupture and worse prognosis. Women are reportedly protected against AAA possibly by premenopausal levels of estrogen and are, on average, diagnosed at older ages than men. Here, we review the present body of research on AAA pathophysiology in humans, animal models, and cultured cells, with an emphasis on sex differences and sex steroid hormone signaling.


Asunto(s)
Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Disparidades en el Estado de Salud , Edad de Inicio , Animales , Aorta Abdominal/fisiopatología , Aneurisma de la Aorta Abdominal/epidemiología , Aneurisma de la Aorta Abdominal/fisiopatología , Aneurisma de la Aorta Abdominal/prevención & control , Fenómenos Biomecánicos , Femenino , Hemodinámica , Humanos , Masculino , Pronóstico , Factores Protectores , Factores de Riesgo , Factores Sexuales , Transducción de Señal , Remodelación Vascular
7.
Am J Physiol Heart Circ Physiol ; 314(2): H330-H342, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887333

RESUMEN

Estrogen has been shown to affect vascular reactivity. Here, we assessed the estrogen receptor-α (ERα) dependency of estrogenic effects on vasorelaxation via a rapid nongenomic pathway in both male and ovary-intact female mice. We compared the effect of a primary estrogen, 17ß-estradiol (E2) or 4,4',4″-(4-propyl-[1H]pyrazole-1,3,5-triyl)tris-phenol (PPT; selective ERα agonist). We found that E2 and PPT induced greater aortic relaxation in female mice than in male mice, indicating ERα mediation, which was further validated by using ERα antagonism. Treatment with 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP dihydrochloride; ERα antagonist) attenuated PPT-mediated vessel relaxation in both sexes. ERα-mediated vessel relaxation was further validated by the absence of significant PPT-mediated relaxation in aortas isolated from ERα knockout mice. Treatment with a specific ERK inhibitor, PD-98059, reduced E2-induced vessel relaxation in both sexes but to a lesser extent in female mice. Furthermore, PD-98059 prevented PPT-induced vessel relaxation in both sexes. Both E2 and PPT treatment activated ERK as early as 5-10 min, which was attenuated by PD-98059 in aortic tissue, cultured primary vascular smooth muscle cells (VSMCs), and endothelial cells (ECs). Aortic rings denuded of endothelium showed no differences in vessel relaxation after E2 or PPT treatment, implicating a role of ECs in the observed sex differences. Here, our results are unique to show estrogen-stimulated rapid ERα signaling mediated by ERK activation in aortic tissue, as well as VSMCs and ECs in vitro, in regulating vascular function by using side-by-side comparisons in male and ovary-intact female mice in response to E2 or PPT. NEW & NOTEWORTHY Here, we assessed the estrogen receptor-α dependency of estrogenic effects in vasorelaxation of both male and ovary-intact female mice by performing side-by-side comparisons. Also, we describe the connection between estrogen-stimulated rapid estrogen receptor-α signaling and downstream ERK activation in regulating vascular function in male and ovary-intact female mice.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fenoles/farmacología , Pirazoles/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta Torácica/enzimología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Activación Enzimática , Receptor alfa de Estrógeno/deficiencia , Receptor alfa de Estrógeno/genética , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Factores Sexuales , Transducción de Señal/efectos de los fármacos
8.
Int J Mol Sci ; 19(6)2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891768

RESUMEN

Angiogenesis is a complex process that depends on the delicate regulation of gene expression. Dysregulation of transcription during angiogenesis often leads to various human diseases. Emerging evidence has recently begun to show that long non-coding RNAs (lncRNAs) may mediate angiogenesis in both physiological and pathological conditions; concurrently, underlying molecular mechanisms are largely unexplored. Previously, our lab identified metastasis associates lung adenocarcinoma transcript 1 (Malat1) as an oxygen-glucose deprivation (OGD)-responsive endothelial lncRNA. Here we reported that genetic deficiency of Malat1 leads to reduced blood vessel formation and local blood flow perfusion in mouse hind limbs at one to four weeks after hindlimb ischemia. Malat1 and vascular endothelial growth factor receptor 2 (VEGFR2) levels were found to be increased in both cultured mouse primary skeletal muscle microvascular endothelial cells (SMMECs) after 16 h OGD followed by 24 h reperfusion and in mouse gastrocnemius muscle that underwent hindlimb ischemia followed by 28 days of reperfusion. Moreover, Malat1 silencing by locked nucleic acid (LNA)-GapmeRs significantly reduced tube formation, cell migration, and cell proliferation in SMMEC cultures. Mechanistically, RNA subcellular isolation and RNA-immunoprecipitation experiments demonstrate that Malat1 directly targets VEGFR2 to facilitate angiogenesis. The results suggest that Malat1 regulates cell-autonomous angiogenesis through direct regulation of VEGFR2.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Isquemia/genética , Neovascularización Fisiológica/genética , ARN Largo no Codificante/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Eliminación de Gen , Silenciador del Gen , Ratones , Microvasos/patología , Músculo Esquelético/irrigación sanguínea , Unión Proteica , ARN Largo no Codificante/genética , Flujo Sanguíneo Regional , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 313(3): H524-H545, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626075

RESUMEN

Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).


Asunto(s)
Andrógenos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Estrógenos/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Animales , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/terapia , Sistema Cardiovascular/fisiopatología , Femenino , Disparidades en el Estado de Salud , Disparidades en Atención de Salud , Humanos , Masculino , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Factores Sexuales , Transducción de Señal
10.
RNA Biol ; 14(12): 1705-1714, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28837398

RESUMEN

Recent studies suggest that in humans, DNA sequences responsible for protein coding regions comprise only 2% of the total genome. The rest of the transcripts result in RNA transcripts without protein-coding ability, including long noncoding RNAs (lncRNAs). Different from most members in the lncRNA family, the metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is abundantly expressed and evolutionarily conserved throughout various mammalian species. Malat1 is one of the first identified lncRNAs associated with human disease, and cumulative studies have indicated that Malat1 plays critical roles in the development and progression of various cancers. Malat1 is also actively involved in various physiologic processes, including alternative splicing, epigenetic modification of gene expression, synapse formation, and myogenesis. Furthermore, extensive evidences show that Malat1 plays pivotal roles in multiple pathological conditions as well. In this review, we will summarize latest findings related to the physiologic and pathophysiological processes of Malat1 and discuss its therapeutic potentials.


Asunto(s)
Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Empalme Alternativo , Animales , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Transcripción Genética
11.
Metab Brain Dis ; 30(2): 401-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24338065

RESUMEN

Transcription factors play an important role in the pathophysiology of many neurological disorders, including stroke. In the past three decades, an increasing number of transcription factors and their related gene signaling networks have been identified, and have become a research focus in the stroke field. Krüppel-like factors (KLFs) are members of the zinc finger family of transcription factors with diverse regulatory functions in cell growth, differentiation, proliferation, migration, apoptosis, metabolism, and inflammation. KLFs are also abundantly expressed in the brain where they serve as critical regulators of neuronal development and regeneration to maintain normal brain function. Dysregulation of KLFs has been linked to various neurological disorders. Recently, there is emerging evidence that suggests KLFs have an important role in the pathogenesis of stroke and provide endogenous vaso-or neuro-protection in the brain's response to ischemic stimuli. In this review, we summarize the basic knowledge and advancement of these transcriptional mediators in the central nervous system, highlighting the novel roles of KLFs in stroke.


Asunto(s)
Enfermedades del Sistema Nervioso Central/fisiopatología , Sistema Nervioso Central/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Accidente Cerebrovascular/fisiopatología , Animales , Enfermedades del Sistema Nervioso Central/genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Regeneración Nerviosa , Enfermedades del Sistema Nervioso/genética , Accidente Cerebrovascular/genética
12.
Brain ; 136(Pt 4): 1274-87, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23408111

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is emerging as a major regulator in neurological diseases. However, the role of (PPARγ) and its co-regulators in cerebrovascular endothelial dysfunction after stroke is unclear. Here, we have demonstrated that (PPARγ) activation by pioglitazone significantly inhibited both oxygen-glucose deprivation-induced cerebral vascular endothelial cell death and middle cerebral artery occlusion-triggered cerebrovascular damage. Consistent with this finding, selective (PPARγ) genetic deletion in vascular endothelial cells resulted in increased cerebrovascular permeability and brain infarction in mice after focal ischaemia. Moreover, we screened for (PPARγ) co-regulators using a genome-wide and high-throughput co-activation system and revealed KLF11 as a novel (PPARγ) co-regulator, which interacted with (PPARγ) and regulated its function in mouse cerebral vascular endothelial cell cultures. Interestingly, KLF11 was also found as a direct transcriptional target of (PPARγ). Furthermore, KLF11 genetic deficiency effectively abolished pioglitazone cytoprotection in mouse cerebral vascular endothelial cell cultures after oxygen-glucose deprivation, as well as pioglitazone-mediated cerebrovascular protection in a mouse middle cerebral artery occlusion model. Mechanistically, we demonstrated that KLF11 enhanced (PPARγ) transcriptional suppression of the pro-apoptotic microRNA-15a (miR-15a) gene, resulting in endothelial protection in cerebral vascular endothelial cell cultures and cerebral microvasculature after ischaemic stimuli. Taken together, our data demonstrate that recruitment of KLF11 as a novel (PPARγ) co-regulator plays a critical role in the cerebrovascular protection after ischaemic insults. It is anticipated that elucidating the coordinated actions of KLF11 and (PPARγ) will provide new insights into understanding the molecular mechanisms underlying (PPARγ) function in the cerebral vasculature and help to develop a novel therapeutic strategy for the treatment of stroke.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Células Endoteliales/metabolismo , PPAR gamma/metabolismo , Proteínas Represoras/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Infarto Encefálico/metabolismo , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genética , PPAR gamma/deficiencia , PPAR gamma/genética , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología
13.
Neurochem Int ; 172: 105643, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007071

RESUMEN

Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.


Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , ARN Largo no Codificante , Animales , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Circular , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/metabolismo , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico
14.
JCI Insight ; 9(12)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912585

RESUMEN

The diffuse axonal damage in white matter and neuronal loss, along with excessive neuroinflammation, hinder long-term functional recovery after traumatic brain injury (TBI). MicroRNAs (miRs) are small noncoding RNAs that negatively regulate protein-coding target genes in a posttranscriptional manner. Recent studies have shown that loss of function of the miR-15a/16-1 cluster reduced neurovascular damage and improved functional recovery in ischemic stroke and vascular dementia. However, the role of the miR-15a/16-1 cluster in neurotrauma is poorly explored. Here, we report that genetic deletion of the miR-15a/16-1 cluster facilitated the recovery of sensorimotor and cognitive functions, alleviated white matter/gray matter lesions, reduced cerebral glial cell activation, and inhibited infiltration of peripheral blood immune cells to brain parenchyma in a murine model of TBI when compared with WT controls. Moreover, intranasal delivery of the miR-15a/16-1 antagomir provided similar brain-protective effects conferred by genetic deletion of the miR-15a/16-1 cluster after experimental TBI, as evidenced by showing improved sensorimotor and cognitive outcomes, better white/gray matter integrity, and less inflammatory responses than the control antagomir-treated mice after brain trauma. miR-15a/16-1 genetic deficiency and miR-15a/16-1 antagomir also significantly suppressed inflammatory mediators in posttrauma brains. These results suggest miR-15a/16-1 as a potential therapeutic target for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , MicroARNs , Recuperación de la Función , Animales , MicroARNs/genética , MicroARNs/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Ratones , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Encéfalo/patología , Encéfalo/metabolismo
15.
J Biol Chem ; 287(32): 27055-64, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22692216

RESUMEN

The effects and potential mechanisms of the vascular endothelial cell (EC)-enriched microRNA-15a (miR-15a) on angiogenesis remain unclear. Here, we show a novel finding that EC-selective miR-15a transgenic overexpression leads to reduced blood vessel formation and local blood flow perfusion in mouse hindlimbs at 1-3 weeks after hindlimb ischemia. Mechanistically, gain- or loss-of-miR-15a function by lentiviral infection in ECs significantly reduces or increases tube formation, cell migration, and cell differentiation, respectively. By FGF2 and VEGF 3'-UTR luciferase reporter assays, Real-time PCR, and immunoassays, we further identified that the miR-15a directly targets FGF2 and VEGF to facilitate its anti-angiogenic effects. Our data suggest that the miR-15a in ECs can significantly suppress cell-autonomous angiogenesis through direct inhibition of endogenous endothelial FGF2 and VEGF activities. Pharmacological modulation of miR-15a function may provide a new therapeutic strategy to intervene against angiogenesis in a variety of pathological conditions.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Isquemia/patología , MicroARNs/fisiología , Neovascularización Patológica/prevención & control , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Cartilla de ADN , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
16.
Circulation ; 126(9): 1067-78, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22855570

RESUMEN

BACKGROUND: Perivascular adipose tissue (PVAT) surrounds most vessels and shares common features with brown adipose tissue (BAT). Although adaptive thermogenesis in BAT increases energy expenditure and is beneficial for metabolic diseases, little is known about the role of PVAT in vascular diseases such as atherosclerosis. We hypothesize that the thermogenic function of PVAT regulates intravascular temperature and reduces atherosclerosis. METHODS AND RESULTS: PVAT shares similar structural and proteomics with BAT. We demonstrated that PVAT has thermogenic properties similar to BAT in response to cold stimuli in vivo. Proteomics analysis of the PVAT from mice housed in a cold environment identified differential expression in proteins highly related to cellular metabolic processes. In a mouse model deficient in peroxisome proliferator-activated receptor-γ in smooth muscle cells (SMPG KO mice), we uncovered a complete absence of PVAT surrounding the vasculature, likely caused by peroxisome proliferator-activated receptor-γ deletion in the perivascular adipocyte precursor cells as well. Lack of PVAT, which results in loss of its thermogenic activity, impaired vascular homeostasis, which caused temperature loss and endothelial dysfunction. We further showed that cold exposure inhibits atherosclerosis and improves endothelial function in mice with intact PVAT but not in SMPG KO mice as a result of impaired lipid clearance. Proinflammatory cytokine expression in PVAT is not altered on exposure to cold. Finally, prostacyclin released from PVAT contributes to the vascular protection against endothelial dysfunction. CONCLUSIONS: PVAT is a vasoactive organ with functional characteristics similar to BAT and is essential for intravascular thermoregulation of cold acclimation. This thermogenic capacity of PVAT plays an important protective role in the pathogenesis of atherosclerosis.


Asunto(s)
Tejido Adiposo/fisiopatología , Aterosclerosis/etiología , Regulación de la Temperatura Corporal/fisiología , Músculo Liso Vascular/fisiopatología , PPAR gamma/deficiencia , Adaptación Fisiológica/fisiología , Adipocitos/metabolismo , Tejido Adiposo/patología , Tejido Adiposo Pardo/metabolismo , Animales , Aorta , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/prevención & control , Arterias Carótidas , Frío , Citocinas/metabolismo , Dieta Aterogénica , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , PPAR gamma/genética , Prostaglandinas I/fisiología , Proteómica
17.
iScience ; 26(1): 105769, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36594018

RESUMEN

Multiple genome-wide association studies (GWAS) have identified specific genetic variants in the coiled-coil domain containing 92 (CCDC92) locus that is associated with obesity and type 2 diabetes in humans. However, the biological function of CCDC92 in obesity and insulin resistance remains to be explored. Utilizing wild-type (WT) and Ccdc92 whole-body knockout (KO) mice, we found that Ccdc92 KO reduced obesity and increased insulin sensitivity under high-fat diet (HFD) conditions. Ccdc92 KO inhibited macrophage infiltration and fibrosis in white adipose tissue (WAT), suggesting Ccdc92 ablation protects against adipose tissue dysfunction. Ccdc92 deletion also increased energy expenditure and further attenuated hepatic steatosis in mice on an HFD. Ccdc92 KO significantly inhibited the inflammatory response and suppressed the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in WAT. Altogether, we demonstrated the critical role of CCDC92 in metabolism, constituting a potential target for treating obesity and insulin resistance.

18.
J Biol Chem ; 286(47): 40584-94, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21990353

RESUMEN

Gluconeogenesis contributes to insulin resistance in type 1 and type 2 diabetes, but its regulation and the underlying molecular mechanisms remain unclear. Recently, calcium-regulated heat-stable protein 1 (CARHSP1) was identified as a biomarker for diabetic complications. In this study, we investigated the role of CARHSP1 in hepatic gluconeogenesis. We assessed the regulation of hepatic CARHSP1 expression under conditions of fasting and refeeding. Adenovirus-mediated CARHSP1 overexpression and siRNA-mediated knockdown experiments were performed to characterize the role of CARHSP1 in the regulation of gluconeogenic gene expression. Here, we document for the first time that CARHSP1 is regulated by nutrient status in the liver and functions at the transcriptional level to negatively regulate gluconeogenic genes, including the glucose-6-phosphatase catalytic subunit (G6Pc) and phosphoenolpyruvate carboxykinase 1 (PEPCK1). In addition, we found that CARHSP1 can physically interact with peroxisome proliferator-activated receptor-α (PPARα) and inhibit its transcriptional activity. Both pharmacological and genetic ablations of PPARα attenuate the inhibitory effect of CARHSP1 on gluconeogenic gene expression in hepatocytes. Our data suggest that CARHSP1 inhibits hepatic gluconeogenic gene expression via repression of PPARα and that CARHSP1 may be a molecular target for the treatment of diabetes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Gluconeogénesis/genética , PPAR alfa/deficiencia , PPAR alfa/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Animales , Dominio Catalítico , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Técnicas de Silenciamiento del Gen , Glucosa-6-Fosfatasa/química , Glucosa-6-Fosfatasa/genética , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
19.
Circ Res ; 107(4): 540-8, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20558825

RESUMEN

RATIONALE: Nitro-oleic acid (OA-NO(2)) is a bioactive, nitric-oxide derived fatty acid with physiologically relevant vasculoprotective properties in vivo. OA-NO(2) exerts cell signaling actions as a result of its strong electrophilic nature and mediates pleiotropic cell responses in the vasculature. OBJECTIVE: The present study sought to investigate the protective role of OA-NO(2) in angiotensin (Ang) II-induced hypertension. METHODS AND RESULTS: We show that systemic administration of OA-NO(2) results in a sustained reduction of Ang II-induced hypertension in mice and exerts a significant blood pressure lowering effect on preexisting hypertension established by Ang II infusion. OA-NO(2) significantly inhibits Ang II contractile response as compared to oleic acid (OA) in mesenteric vessels. The improved vasoconstriction is specific for the Ang II type 1 receptor (AT(1)R)-mediated signaling because vascular contraction by other G-protein-coupled receptors is not altered in response to OA-NO(2) treatment. From the mechanistic viewpoint, OA-NO(2) lowers Ang II-induced hypertension independently of peroxisome proliferation-activated receptor (PPAR)gamma activation. Rather, OA-NO(2), but not OA, specifically binds to the AT(1)R, reduces heterotrimeric G-protein coupling, and inhibits IP(3) (inositol-1,4,5-trisphosphate) and calcium mobilization, without inhibiting Ang II binding to the receptor. CONCLUSIONS: These results demonstrate that OA-NO(2) diminishes the pressor response to Ang II and inhibits AT(1)R-dependent vasoconstriction, revealing OA-NO(2) as a novel antagonist of Ang II-induced hypertension.


Asunto(s)
Angiotensina II/antagonistas & inhibidores , Angiotensina II/toxicidad , Hipertensión/inducido químicamente , Hipertensión/prevención & control , Nitrocompuestos/uso terapéutico , Ácido Oléico/uso terapéutico , Angiotensina II/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Ácidos Linoleicos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ácidos Oléicos/uso terapéutico , Ratas , Ratas Sprague-Dawley
20.
Arterioscler Thromb Vasc Biol ; 31(3): 574-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21205987

RESUMEN

OBJECTIVE: To investigate the effects of peroxisome proliferator-activated receptor (PPAR)δ in the cerebral vasculature following stroke-induced brain injury. METHODS AND RESULTS: Here, we report a novel finding that selective PPARδ genetic deletion in vascular smooth muscle cells (VSMCs) resulted in increased cerebrovascular permeability and brain infarction in mice after middle cerebral artery occlusion (MCAO). Mechanistically, we revealed for the first time that PPARδ expression is reduced, but matrix metalloproteinase (MMP)-9 activity is increased in cultured VSMCs after oxygen-glucose deprivation and also in the cerebral cortex of mice following MCAO. Moreover, gain- and loss of PPARδ function in VSMCs significantly reduces and increases oxygen-glucose deprivation-induced MMP-9 activity, respectively. We have further identified that MMP-9 is a direct target of PPARδ-mediated transrepression by chromatin immunoprecipitation and PPARδ transcriptional activity assays. Furthermore, inhibition of MMP-9 activity by lentiviral MMP-9 short hairpin RNA effectively improves cerebrovascular permeability and reduces brain infarction in VSMC-selective PPARδ conditional knockout mice after MCAO. CONCLUSIONS: Our data demonstrate that PPARδ in VSMCs can prevent ischemic brain injury by inhibition of MMP-9 activation and attenuation of postischemic inflammation. The pharmacological activation of PPARδ may provide a new therapeutic strategy to treat stroke-induced vascular and neuronal damage.


Asunto(s)
Permeabilidad Capilar , Corteza Cerebral/irrigación sanguínea , Infarto de la Arteria Cerebral Media/metabolismo , Músculo Liso Vascular/metabolismo , PPAR delta/metabolismo , Daño por Reperfusión/prevención & control , Animales , Sitios de Unión , Hipoxia de la Célula , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Glucosa/deficiencia , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Inflamación/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Oxígeno/metabolismo , PPAR delta/deficiencia , PPAR delta/genética , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Mensajero/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factores de Tiempo , Activación Transcripcional , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA