Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 36(46): 11634-11645, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852772

RESUMEN

Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT: Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.


Asunto(s)
Neuronas GABAérgicas/patología , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Células-Madre Neurales/trasplante , Regeneración de la Medula Espinal/fisiología , Médula Espinal/fisiología , Sinapsis/patología , Animales , Neuronas GABAérgicas/metabolismo , Hiperalgesia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Prosencéfalo/citología , Trasplante de Células Madre/métodos , Sinapsis/metabolismo , Resultado del Tratamiento
2.
J Vis Exp ; (166)2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33346205

RESUMEN

Cerebellum plays an important role in several key functions including control of movement, balance, cognition, reward, and affect. Imaging studies indicate that distinct cerebellar regions contribute to these different functions. Molecular studies examining regional cerebellar differences are lagging as they are mostly done on whole cerebellar extracts thereby masking any distinctions across specific cerebellar regions. Here we describe a technique to reproducibly and quickly dissect four different cerebellar regions: the deep cerebellar nuclei (DCN), anterior and posterior vermal cerebellar cortex, and the cerebellar cortex of the hemispheres. Dissecting out these distinct regions allows for the exploration of molecular mechanisms that may underlie their unique contributions to balance, movement, affect and cognition. This technique may also be used to explore differences in pathological susceptibility of these specific regions across various mouse disease models.


Asunto(s)
Cerebelo/metabolismo , Disección , Animales , Fructosa-Bifosfato Aldolasa/metabolismo , Regulación de la Expresión Génica , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones Endogámicos C57BL , ARN/aislamiento & purificación
3.
PLoS One ; 15(2): e0226289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32015563

RESUMEN

Calcium binding proteins are expressed throughout the central and peripheral nervous system and disruption of their activity has major consequences in a wide array of cellular processes, including transmission of nociceptive signals that are processed at the level of the spinal cord. We previously reported that the calcium binding protein, hippocalcin-like 4 (Hpcal4), is heavily expressed in interneurons of the superficial dorsal horn, and that its expression is significantly downregulated in a TR4 mutant mouse model that exhibits major pain and itch deficits due to loss of a subpopulation of excitatory interneurons. That finding suggested that Hpcal4 may be a contributor to the behavioral phenotype of the TR4 mutant mouse. To address this question, here we investigated the behavioral consequences of global deletion of Hpcal4 in a battery of acute and persistent pain and itch tests. Unexpectedly, with the exception of a mild reduction in acute baseline thermal responses, Hpcal4-deficient mice exhibit no major deficits in pain or itch responses, under normal conditions or in the setting of tissue or nerve injury. Taken together, our results indicate that the neural calcium sensor Hpcal4 likely makes a limited contribution to pain and itch processing.


Asunto(s)
Neurocalcina/metabolismo , Dolor/metabolismo , Prurito/metabolismo , Animales , Escala de Evaluación de la Conducta , Conducta Animal , Cloroquina/administración & dosificación , Cloroquina/farmacología , Técnicas de Inactivación de Genes , Histamina/administración & dosificación , Histamina/farmacología , Calor , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurocalcina/genética , Prurito/inducido químicamente , Nervio Ciático/lesiones , Asta Dorsal de la Médula Espinal/metabolismo
4.
Nat Commun ; 11(1): 264, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937758

RESUMEN

Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant expansion and proliferation of macrophages around injured sensory neurons in dorsal root ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not those at the nerve injury site, to both the initiation and maintenance of the mechanical hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion of DRG macrophages in both male and female mice. However, fewer macrophages are induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons, which prevents nerve injury-induced microglial activation and proliferation, only reduces macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets for neuropathic pain management.


Asunto(s)
Ganglios Espinales/inmunología , Macrófagos/fisiología , Neuralgia/inmunología , Animales , Comunicación Celular , Proliferación Celular/efectos de los fármacos , Femenino , Hiperalgesia/inmunología , Inmunosupresores/farmacología , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microglía/metabolismo , Microglía/fisiología , Traumatismos de los Nervios Periféricos/inmunología , Embarazo , Células Receptoras Sensoriales/metabolismo , Factores Sexuales , Tacrolimus/análogos & derivados , Tacrolimus/farmacología
5.
Pain Rep ; 3(4): e659, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123855

RESUMEN

INTRODUCTION: Gabapentin regulates pain processing by direct action on primary afferent nociceptors and dorsal horn nociresponsive neurons. Through an action at supraspinal levels, gabapentin also engages descending noradrenergic inhibitory controls that indirectly regulate spinal cord pain processing. Although direct injection of gabapentin into the anterior cingulate cortex provides pain relief independent of descending inhibitory controls, it remains unclear whether that effect is representative of what occurs when gabapentin interacts at multiple brain loci, eg, after intracerebroventricular (i.c.v.) injection. METHODS: We administered gabapentin i.c.v. in a mouse model of chemotherapy (paclitaxel)-induced neuropathic pain. To distinguish spinal from supraspinally processed features of the pain experience, we examined mechanical hypersensitivity and assessed relief of pain aversiveness using an analgesia-induced conditioned place preference paradigm. RESULTS: Paclitaxel-treated mice showed a preference for a 100-µg i.c.v. gabapentin-paired chamber that was accompanied by reduced mechanical allodynia, indicative of concurrent engagement of descending controls. As expected, the same dose in uninjured mice did not induce place preference, demonstrating that gabapentin, unlike morphine, is not inherently rewarding. Furthermore, a lower dose of supraspinal gabapentin (30 µg), which did not reverse mechanical allodynia, did not induce conditioned place preference. Finally, concurrent injections of i.c.v. gabapentin (100 µg) and intrathecal yohimbine, an α2-receptor antagonist, blocked preference for the gabapentin-paired chamber. CONCLUSION: We conclude that pain relief, namely a reduction of pain aversiveness, induced by supraspinal gabapentin administered by an i.c.v. route is secondary to its activation of descending noradrenergic inhibitory controls that block transmission of the "pain" message from the spinal cord to the brain.

6.
eNeuro ; 5(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627644

RESUMEN

BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.


Asunto(s)
Vías Aferentes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Fibras Nerviosas Mielínicas/metabolismo , Dolor/metabolismo , Prurito/metabolismo , Animales , Antineoplásicos Fitogénicos/toxicidad , Factor Neurotrófico Derivado del Encéfalo/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Histamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Paclitaxel/toxicidad , Dolor/inducido químicamente , Dimensión del Dolor , Prurito/inducido químicamente
7.
J Neurotrauma ; 35(7): 918-929, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29285982

RESUMEN

The inflammation response induced by brain trauma can impair recovery. This response requires several hours to develop fully and thus provides a clinically relevant therapeutic window of opportunity. Poly(ADP-ribose) polymerase inhibitors suppress inflammatory responses, including brain microglial activation. We evaluated delayed treatment with veliparib, a poly(ADP-ribose) polymerase inhibitor, currently in clinical trials as a cancer therapeutic, in rats and pigs subjected to controlled cortical impact (CCI). In rats, CCI induced a robust inflammatory response at the lesion margins, scattered cell death in the dentate gyrus, and a delayed, progressive loss of corpus callosum axons. Pre-determined measures of cognitive and motor function showed evidence of attentional deficits that resolved after three weeks and motor deficits that recovered only partially over eight weeks. Veliparib was administered beginning 2 or 24 h after CCI and continued for up to 12 days. Veliparib suppressed CCI-induced microglial activation at doses of 3 mg/kg or higher and reduced reactive astrocytosis and cell death in the dentate gyrus, but had no significant effect on delayed axonal loss or functional recovery. In pigs, CCI similarly induced a perilesional microglial activation that was attenuated by veliparib. CCI in the pig did not, however, induce detectable persisting cognitive or motor impairment. Our results showed veliparib suppression of CCI-induced microglial activation with a delay-to-treatment interval of at least 24 h in both rats and pigs, but with no associated functional improvement. The lack of improvement in long-term recovery underscores the complexities in translating anti-inflammatory effects to clinically relevant outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA