RESUMEN
Automated transparent chambers have gained increasing popularity in recent years to continuously measure net CO2 fluxes between low-statured canopies and the atmosphere. In this study, we carried out four field campaigns with chamber measurements in a variety of mountainous grasslands. A mathematic stationary point (or critical point, a point at which the derivative of a function is zero) in the CO2 mixing ratio time series was found in a substantial fraction of the measurements at all the sites, which had a significant influence on the performances of the regression algorithms. The stationary point was probably due to condensed water on the inner wall of the chamber dome, which reduced the solar radiation and resulted in a reversal of the CO2 mixing ratio time series in the chamber (so called Clouded-Glass Effect or CGE in this study). This effect may be the cause of the observed underestimation of daytime CO2 fluxes when using common linear and exponential regression models on continuous automated chamber observations. In order to avoid biased flux estimation of daytime CO2 fluxes, we introduced a linearly increasing term to the exponential function so as to compensate for the influence of the CGE, which gives acceptable model errors and improves the CO2 flux estimation by 5 % for temperate mountainous grasslands. We conclude that exponential regression models should be favoured over linear models and recommend to account for the effects of CGE by either excluding ambiguous observations from the flux computations where stationary points can be identified in the CO2 mixing ratio time series, or by adding a linearly increasing term to the exponential regression model.
RESUMEN
The viability of carbonyl sulfide (COS) measurements for partitioning ecosystem-scale net carbon dioxide (CO2) fluxes into photosynthesis and respiration critically depends on our knowledge of non-leaf sinks and sources of COS in ecosystems. We combined soil gas exchange measurements of COS and CO2 with next-generation sequencing technology (NGS) to investigate the role of soil microbiota for soil COS exchange. We applied different treatments (litter and glucose addition, enzyme inhibition and gamma sterilization) to soil samples from a temperate grassland to manipulate microbial composition and activity. While untreated soil was characterized by consistent COS uptake, other treatments reduced COS uptake and even turned the soil into a net COS source. Removing biotic processes through sterilization led to positive or zero fluxes. We used NGS to link changes in the COS response to alterations in the microbial community composition, with bacterial data having a higher explanatory power for the measured COS fluxes than fungal data. We found that the genera Arthrobacter and Streptomyces were particularly abundant in samples exhibiting high COS emissions. Our results indicate co-occurring abiotic production and biotic consumption of COS in untreated soil, the latter linked to carbonic anhydrase activity, and a strong dependency of the COS flux on the activity, identity, abundance of and substrate available to microorganisms.
RESUMEN
Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site-specific management strategies strongly affect the biosphere-atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2 ), nitrous oxide (N2 O), and methane (CH4 ). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long-term N2 O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2 , N2 O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (-1,783 to -91 g CO2 m-2 year-1 ), but a N2 O source (18-638 g CO2 -eq. m-2 year-1 ), and either a CH4 sink or source (-9 to 488 g CO2 -eq. m-2 year-1 ). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between -2,761 and -58 g CO2 -eq. m-2 year-1 , with N2 O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2 O and CH4 fluxes was generally low and varied considerably within years. However, after site-specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity ("sweet spots") and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2 O and CH4 emissions. The N2 O-N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%-8.6%). Although grassland management led to increased N2 O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.
Asunto(s)
Pradera , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Europa (Continente) , Efecto Invernadero , Metano/análisis , Modelos Teóricos , Óxido Nitroso/análisis , SueloRESUMEN
During recent years, carbonyl sulfide (COS), a trace gas with a similar diffusion pathway into leaves as carbon dioxide (CO2), but with no known "respiration-like" leaf source, has been discussed as a promising new approach for partitioning net ecosystem-scale CO2 fluxes into photosynthesis and respiration. The utility of COS for flux partitioning at the ecosystem scale critically depends on the understanding of non-leaf sources and sinks of COS. This study assessed the contribution of the soil to ecosystem-scale COS fluxes under simulated drought conditions at temperate grassland in the Central Alps. We used transparent steady-state flow-through chambers connected to a quantum cascade laser spectrometer to measure the COS and CO2 gas exchange between the soil surface and the atmosphere. Soils were a source of COS during the day, emissions being mainly driven by incoming solar radiation and to a lesser degree soil temperature. Soil water content had a negligible influence on soil COS exchange and thus the drought and control treatment were statistically not significantly different. Overall, daytime fluxes were large (12.5 ± 13.8 pmol m-2 s-1) in their magnitude and consistently positive compared to the previous studies, which predominantly used dark chambers. Nighttime measurements revealed soil COS fluxes around zero, as did measurements with darkened soil chambers during daytime reinforcing the importance of incoming solar radiation. Our results suggest that abiotic drivers play a key role in controlling in situ soil COS fluxes of the investigated grassland.
Asunto(s)
Pradera , Suelo , Dióxido de Carbono/metabolismo , Sequías , EcosistemaRESUMEN
Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LSTsat) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LSTcam). We show the consequences of neglecting atmospheric effects on LSTcam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LSTosr) and LSTcam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LSTcam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LSTcam, proving the necessity to correct LSTcam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LSTcam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.
Asunto(s)
Temperatura , Termografía , Atmósfera , Humedad , Italia , Microclima , Modelos Teóricos , Análisis de Regresión , Reproducibilidad de los Resultados , Imágenes Satelitales , VientoRESUMEN
In complex, sloping terrain, horizontal measurements of net radiation are not reflective of the radiative energy available for the conductive and convective heat exchange of the underlying surface. Using data from a grassland site on a mountain slope characterised by spatial heterogeneity in inclination and aspect, we tested the hypothesis that a correction of the horizontal net radiation measurements which accounts for the individual footprint contributions of the various surfaces to the measured sensible and latent heat eddy covariance fluxes will yield more realistic slope-parallel net radiation estimates compared to a correction based on the average inclination and aspect of the footprint. Our main result is that both approaches led to clear, but very similar improvements in the phase between available energy and the sum of the latent and sensible heat fluxes. As a consequence the variance in the sum of latent and sensible heat flux explained by available radiation improved by >10 %, while energy balance closure improved only slightly. This is shown to be mainly due to the average inclination and aspect corresponding largely with the inclination and aspect of the main flux source area in combination with a limited sensitivity of the slope correction to small angular differences in, particularly, inclination and aspect. We conclude with a discussion of limitations of the present approach and future research directions.
RESUMEN
Field measurements of photosynthetic carbon isotope discrimination ((13)Δ) of Fagus sylvatica, conducted with branch bags and laser spectrometry, revealed a high variability of (13)Δ, both on diurnal and day-to-day timescales. We tested the prediction capability of three versions of a commonly used model for (13)Δ [called here comprehensive ((13)(Δcomp)), simplified ((13) Δsimple) and revised ((13)(Δrevised)) versions]. A Bayesian approach was used to calibrate major model parameters. Constrained estimates were found for the fractionation during CO(2) fixation in (13)(Δcomp), but not in (13)(Δsimple), and partially for the mesophyll conductance for CO(2)(gi). No constrained estimates were found for fractionations during mitochondrial and photorespiration, and for a diurnally variable apparent fractionation between current assimilates and mitochondrial respiration, specific to (13)(Δrevised). A quantification of parameter estimation uncertainties and interdependencies further helped explore model structure and behaviour. We found that (13)(Δcomp) usually outperformed (13)(Δsimple) because of the explicit consideration of gi and the photorespiratory fractionation in (13)(Δcomp) that enabled a better description of the large observed diurnal variation (≈9) of (13)Δ. Flux-weighted daily means of (13)Δ were also better predicted with (13)(Δcomp) than with (13)(Δsimple).
Asunto(s)
Fagus/fisiología , Modelos Biológicos , Fotosíntesis , Teorema de Bayes , Calibración , Isótopos de Carbono , Ritmo Circadiano/fisiología , Bases de Datos como Asunto , Suiza , Temperatura , Factores de TiempoRESUMEN
Above- and belowground processes in plants are tightly coupled via carbon and water fluxes through the soil-plant-atmosphere system. The oxygen isotopic composition of atmospheric CO2 and water vapour (H2Ov) provides a valuable tool for investigating the transport and cycling of carbon and water within this system. However, detailed studies on the coupling between ecosystem components and environmental drivers are sparse. Therefore, we conducted a H2 (18)O-labelling experiment to investigate the effect of drought on the speed of the link between below- and aboveground processes and its subsequent effect on C(18)OO released by leaves and soils. A custom-made chamber system, separating shoot from soil compartments, allowed separate measurements of shoot- and soil-related processes under controlled conditions. Gas exchange of oxygen stable isotopes in CO2 and H2Ov served as the main tool of investigation and was monitored in real time on Fagus sylvatica saplings using laser spectroscopy. H2(18)O-labelling showed that drought caused a slower transport of water molecules from soil to shoot, which was indicated by its direct derivation from independently measured concentrations and (18)O/(16)O ratios of CO2 and H2Ov, respectively. Furthermore, drought reduced the (18)O equilibrium between H2O and CO2 at the shoot level, resulting in less-enriched C(18)OO fluxes from leaf to atmosphere compared with control plants. Compared with the shoot, (18)O equilibrium was not instantaneous in the soil and no drought effect was apparent.
Asunto(s)
Dióxido de Carbono/metabolismo , Fagus/fisiología , Agua/metabolismo , Atmósfera , Carbono/metabolismo , Sequías , Oxígeno/metabolismo , Isótopos de Oxígeno/análisis , Hojas de la Planta/fisiología , SueloRESUMEN
On-line measurements of photosynthetic carbon isotope discrimination ((13)Δ) under field conditions are sparse. Hence, experimental verification of the natural variability of instantaneous (13)Δ is scarce, although (13)Δ is, explicitly and implicitly, used from leaf to global scales for inferring photosynthetic characteristics. This work presents the first on-line field measurements of (13)Δ of Fagus sylvatica branches, at hourly resolution, using three open branch bags and a laser spectrometer for CO2 isotopologue measurements (QCLAS-ISO). Data from two August/September field campaigns, in 2009 and 2010, in a temperate forest in Switzerland are shown. Diurnal variability of (13)Δ was substantial, with mean diurnal amplitudes of ~9 and maximum diurnal amplitudes of ~20. The highest (13)Δ were generally observed during early morning and late afternoon, and the lowest (13)Δ during midday. An assessment of propagated standard deviations of (13)Δ demonstrated that the observed diurnal variation of (13)Δ was not a measurement artefact. Day-to-day variations of (13)Δ were summarized with flux-weighted daily means of (13)Δ, which ranged from 15 to 23 in 2009 and from 18 to 29 in 2010, thus displaying a considerable range of 8-11. Generally, (13)Δ showed the expected negative relationship with intrinsic water use efficiency. Diurnal and day-to-day variability of (13)Δ was, however, always better predicted by that of net CO2 assimilation, especially in 2010 when soil moisture was high and vapour pressure deficit was low. Stomatal control of leaf gas exchange, and consequently (13)Δ, could only be identified under drier conditions in 2009.
Asunto(s)
Dióxido de Carbono/metabolismo , Fagus/fisiología , Transpiración de Plantas/fisiología , Isótopos de Carbono/análisis , Rayos Láser , Fotosíntesis , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Análisis EspectralRESUMEN
Background and aims: Partitioning the measured net ecosystem carbon dioxide (CO2) exchange into gross primary productivity (GPP) and ecosystem respiration remains a challenge, which scientists try to tackle by using the properties of the trace gas carbonyl sulfide (COS). Its similar pathway into and within the leaf makes it a potential photosynthesis proxy. The application of COS as an effective proxy depends, among other things, on a robust inventory of potential COS sinks and sources within ecosystems. While the soil received some attention during the last couple of years, the role of plant roots is mostly unknown. In our study, we investigated the effects of live roots on the soil COS exchange. Methods: An experimental setup was devised to measure the soil and the belowground plant parts of young beech trees observed over the course of 9 months. Results: During the growing season, COS emissions were significantly lower when roots were present compared to chambers only containing soil, while prior to the growing season, with photosynthetically inactive trees, the presence of roots increased COS emissions. The difference in the COS flux between root-influenced and uninfluenced soil was fairly constant within each month, with diurnal variations in the COS flux driven primarily by soil temperature changes rather than the presence or absence of roots. Conclusion: While the mechanisms by which roots influence the COS exchange are largely unknown, their contribution to the overall ground surface COS exchange should not be neglected when quantifying the soil COS exchange. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06438-0.
RESUMEN
It is well established that warming leads to longer growing seasons in seasonally cold ecosystems. Whether this goes along with an increase in the net ecosystem carbon dioxide (CO2) uptake is much more controversial. We studied the effects of warming on the start of the carbon uptake period (CUP) of three mountain grasslands situated along an elevational gradient in the Alps. To this end we used a simple empirical model of the net ecosystem CO2 exchange, calibrated and forced with multi-year empirical data from each site. We show that reductions in the quantity and duration of daylight associated with earlier snowmelts were responsible for diminishing returns, in terms of carbon gain, from longer growing seasons caused by reductions in daytime photosynthetic uptake and increases in nighttime losses of CO2. This effect was less pronounced at high, compared to low, elevations, where the start of the CUP occurred closer to the summer solstice when changes in day length and incident radiation are minimal.
RESUMEN
Recent (13) CO(2) canopy pulse chase labeling studies revealed that photosynthesis influences the carbon isotopic composition of soil respired CO(2) (δ(13) C(SR)) even on a diel timescale. However, the driving mechanisms underlying these short-term responses remain unclear, in particular under drought conditions. The gas exchange of CO(2) isotopes of canopy and soil was monitored in drought/nondrought-stressed beech (Fagus sylvatica) saplings after (13) CO(2) canopy pulse labeling. A combined canopy/soil chamber system with gas-tight separated soil and canopy compartments was coupled to a laser spectrometer measuring mixing ratios and isotopic composition of CO(2) in air at high temporal resolution. The measured δ(13) C(SR) signal was then explained and substantiated by a mechanistic carbon allocation model. Leaf metabolism had a strong imprint on diel cycles in control plants, as a result of an alternating substrate supply switching between sugar and transient starch. By contrast, diel cycles in drought-stressed plants were determined by the relative contributions of autotrophic and heterotrophic respiration throughout the day. Drought reduced the speed of the link between photosynthesis and soil respiration by a factor of c. 2.5, depending on the photosynthetic rate. Drought slows the coupling between photosynthesis and soil respiration and alters the underlying mechanism causing diel variations of δ(13) C(SR).
Asunto(s)
Sequías , Fagus/metabolismo , Hojas de la Planta/metabolismo , Suelo , Biomasa , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Isótopos de Carbono , Respiración de la Célula , Funciones de Verosimilitud , Modelos Biológicos , Fotosíntesis , Factores de TiempoRESUMEN
Climate change is expected to affect the Alps by increasing the frequency and intensity of summer drought events with negative impacts on ecosystem water resources. The response of CO2 and H2O exchange of a mountain grassland to natural fluctuations of soil water content was evaluated during 2001-2009. In addition, the physiological performance of individual mountain forb and graminoid plant species under progressive soil water shortage was explored in a laboratory drought experiment. During the 9-year study period the natural occurrence of moderately to extremely dry periods did not lead to substantial reductions in net ecosystem CO2 exchange and evapotranspiration. Laboratory drought experiments confirmed that all the surveyed grassland plant species were insensitive to progressive soil drying until very low soil water contents (<0.01 m3 m-3) were reached after several days of drought. In field conditions, such a low threshold was never reached. Re-watering after a short-term drought event (5±1 days) resulted in a fast and complete recovery of the leaf CO2 and H2O gas exchange of the investigated plant species. We conclude that the present-day frequency and intensity of dry periods does not substantially affect the functioning of the investigated grassland ecosystem. During dry periods the observed "water spending" strategy employed by the investigated mountain grassland species is expected to provide a cooling feedback on climate warming, but may have negative consequences for down-stream water users.
RESUMEN
Hydropower emits less carbon dioxide than fossil fuels but the lower albedo of hydropower reservoirs compared to terrestrial landscapes results in a positive radiative forcing offsetting some of the negative radiative forcing by hydroelectricity generation. The cumulative effect of this lower albedo has not been quantified. Here we show, by quantifying the difference in remotely sensed albedo between globally distributed hydropower reservoirs and their surrounding landscape, that 19 % of all investigated hydropower plants required 40 years and more for the negative radiative forcing from the fossil fuel displacement to offset the albedo effect. The length of these break-even times depends on the specific combination of climatic and environmental constraints, power plant design characteristics and country-specific electricity carbon intensities. We conclude that future hydropower plants need to minimize the albedo penalty in order to make a meaningful contribution towards limiting global warming.
RESUMEN
Using proton transfer reaction mass spectrometry equipped with a quadrupol mass analyser to quantify the biosphere-atmosphere exchange of volatile organic compounds (VOC), concentrations of different VOC are measured sequentially. Depending on how many VOC species are targeted and their respective integration times, each VOC is measured at repeat rates on the order of a few seconds. This represents an order of magnitude longer sample interval compared to the standard eddy covariance (EC) method (5-20 Hz sampling rates). Here we simulate the effect of disjunct sampling on EC flux estimates by decreasing the time resolution of CO2 and H2O concentrations measured at 20 Hz above a temperate mountain grassland in the Austrian Alps. Fluxes for one month are calculated with the standard EC method and compared to fluxes calculated based on the disjunct data (1, 3 and 5 s sampling rates) using the following approaches: i) imputation of missing concentrations based on the nearest neighbouring samples (iDECnn), ii) imputation by linear interpolation (iDECli), and iii) virtual disjunct EC (vDEC), i.e. flux calculation based solely on the disjunct concentrations. It is shown that the two imputation methods result in additional low-pass filtering, longer lag times (as determined with the maximum cross-correlation method) and a flux loss of 3-30 % as compared to the standard EC method. A novel procedure, based on a transfer function approach, which specifically corrects for the effect of data treatment, was developed, resulting in improved correspondence (to within 2 %). The vDEC method yields fluxes which approximate the true (20 Hz) fluxes to within 3-7 % and it is this approach we recommend because it involves no additional empirical corrections. The only drawback of the vDEC method is the noisy nature of the cross-correlations, which poses problems with lag determination - practical approaches to overcome this limitation are discussed.
RESUMEN
Ozone (O3) fluxes above a temperate mountain grassland were measured by means of the eddy covariance (EC) method using a slow-response O3 analyser. The resultant flux loss was corrected for by a series of transfer functions which model the various sources of high- and, in particular, low-pass filtering. The resulting correction factors varied on average between 1.7 and 3.5 during night and day time, respectively. A cospectral analysis confirmed the accuracy of this approach. O3 fluxes were characterised by a comparatively large random uncertainty, which during daytime typically amounted to 60 %. EC O3 fluxes were compared against O3 flux measurements made concurrently with the flux-gradient (FG) method. The two methods generally agreed well, except for a period between sun rise and early afternoon, when the FG method was suspected of being affected by the presence of photochemical sources/sinks. O3 flux magnitudes and deposition velocities determined with the EC method compared nicely with the available literature from grassland studies. We conclude that our understanding of the causes and consequences of various sources of flux loss (associated with any EC system) has sufficiently matured so that also less-than-ideal instrumentation may be used in EC flux applications, albeit at the cost of relatively large empirical corrections.
RESUMEN
The differential design, deployment and data post-processing of open- (OP) and closed-path (CP) eddy covariance systems is a potential source of bias for ongoing global flux synthesis activities. Here we use a unique six year data set of concurrent CP and OP carbon dioxide (CO2) and water vapour (H2O) eddy covariance flux measurements above a temperate mountain grassland in Austria to explore the consequences of these differences on a long-term basis. The theoretically based transfer function approach was able to account and correct for the differences in low-pass filtering between the two systems. Corrected CO2 and H2O fluxes exhibited excellent 1:1 correspondence, but the CP system tended to underestimate OP H2O fluxes during conditions of high air temperature, wind speed and global radiation, large sun angles and low relative humidity. Corrections for self-heating of the OP infra-red gas analyser had a very small effect on these relationships. Energy balance closure was slightly more favourable for the OP system. No significant differences were found for the random flux uncertainty of both systems. A larger fraction of OP data had to be excluded because of obstructions of the infra-red path by water and snow. This, however, did not translate into a correspondingly larger fraction of accepted CP flux values, because of a larger percentage of CP flux data failing on the stationarity test. Integrated over the annual cycle, the CP system yielded on average a more positive net ecosystem CO2 exchange (25 vs. 0 gC m-2 y-1) and a lower evapotranspiration (465 vs. 549 mm y-1) as compared to the OP system.
RESUMEN
The Penman-Monteith combination equation, which is most frequently used to derive the surface conductance to water vapour (Gs), implicitly assumes the energy balance to be closed. Any energy imbalance (positive or negative) will thus affect the calculated Gs. Using eddy covariance energy flux data from a temperate grassland and a desert shrub ecosystem we explored five possible approaches of closing the energy imbalance and show that calculated Gs may differ considerably between these five approaches depending on the relative magnitudes of sensible and latent heat fluxes, and the magnitude and sign of the energy imbalance. Based on our limited understanding of the nature of the energy imbalance, we tend to favour an approach which preserves the Bowen-ratio and closes the energy balance on a larger time scale.
RESUMEN
The modification of the surface radiation and energy balance in urban areas causes the temperatures in these areas to exceed those of the surrounding countryside. It has thus been suggested that urban environments may serve as field laboratories for studying the effects of a warming climate on biota in a space-for-time substitution. Here we investigated changes in the timing of plant phenology and temperature across study sites that differed in the degree of urbanization using publicly available pan-European datasets for the period 1981-2010. We found a significant advancement in the phenological phases of leaf development, flowering and fruiting with higher degrees of urbanization, whereas a significant delay was observed for phenological phases of leaf senescence. In addition to these phenological changes, an increase in air temperature with higher degrees of urbanization was observed. This increase was largest during the periods of leaf development, flowering and fruiting and smallest during the period of leaf senescence. On the basis of these results, we show that the apparent temperature sensitivity of phenological phases to urban warming is either significantly dampened (leaf development, flowering and fruiting) or reversed (leaf senescence) compared with the temperature sensitivity inferred from temporal changes in phenology and temperature. We conclude that gradients in urbanization represent a poor analogue for the temporal changes in plant phenology, apparently owing to confounding factors associated with urbanization.
Asunto(s)
Clima , Plantas , Cambio Climático , Estaciones del Año , TemperaturaRESUMEN
There is an ongoing discussion about why the net ecosystem CO2 exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m2 m-2. Changes in air/soil temperature and air humidity concurrent with the fraction of diffuse radiation were found to amplify the sensitivity of the investigated temperate mountain grassland ecosystem to diffuse radiation.