Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant J ; 118(2): 437-456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198218

RESUMEN

Trehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they are believed to play pivotal regulatory roles in trehalose metabolism. However, their precise functions in carbon metabolism and crop yield have remained largely unknown. Here, BnaC02.TPS8, a class II TPS gene, is shown to be specifically expressed in mature leaves and the developing pod walls of Brassica napus. Overexpression of BnaC02.TPS8 increased photosynthesis and the accumulation of sugars, starch, and biomass compared to wild type. Metabolomic analysis of BnaC02.TPS8 overexpressing lines and CRISPR/Cas9 mutants indicated that BnaC02.TPS8 enhanced the partitioning of photoassimilate into starch and sucrose, as opposed to glycolytic intermediates and organic acids, which might be associated with TPS activity. Furthermore, the overexpression of BnaC02.TPS8 not only increased seed yield but also enhanced seed oil accumulation and improved the oil fatty acid composition in B. napus under both high nitrogen (N) and low N conditions in the field. These results highlight the role of class II TPS in impacting photosynthesis and seed yield of B. napus, and BnaC02.TPS8 emerges as a promising target for improving B. napus seed yield.


Asunto(s)
Brassica napus , Glucosiltransferasas , Brassica napus/genética , Brassica napus/metabolismo , Fotosíntesis , Semillas/genética , Semillas/metabolismo , Almidón/metabolismo
2.
Planta ; 259(5): 122, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619628

RESUMEN

MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.


Asunto(s)
Arabidopsis , Brassica napus , Fosfatos de Azúcar , Trehalosa , Antocianinas , Arabidopsis/genética , Brassica napus/genética , Carbono , Flavonoides , Nitrógeno , Trehalosa/análogos & derivados , Técnicas del Sistema de Dos Híbridos
3.
Physiol Plant ; 176(2): e14247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38499953

RESUMEN

Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.


Asunto(s)
Brassica napus , Fósforo , Brassica napus/genética , Fosfatasa Ácida/genética , Fenotipo , Genotipo , Suelo
4.
Plant J ; 111(6): 1753-1767, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35883193

RESUMEN

Phosphorus (P) is an important nutrient for plants. Here, we identify a WRKY transcription factor (TF) in poplar (Populus deltoides × Populus euramericana) (PdeWRKY65) that modulates tissue phosphate (Pi) concentrations in poplar. PdeWRKY65 overexpression (OE) transgenic lines showed reduced shoot Pi concentrations under both low and normal Pi availabilities, while PdeWRKY65 reduced expression (RE) lines showed the opposite phenotype. A gene encoding a Pi transporter (PHT), PdePHT1;9, was identified as the direct downstream target of PdeWRKY65 by RNA sequencing (RNA-Seq). The negative regulation of PdePHT1;9 expression by PdeWRKY65 was confirmed by DNA-protein interaction assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), co-expression of the promoters of PdePHT1;9 and PdeWRKY65 in tobacco (Nicotiana benthamiana) leaves, and chromatin immunoprecipitation-quantitative PCR. A second WRKY TF, PdeWRKY6, was subsequently identified and confirmed to positively regulate the expression of PdePHT1;9 by DNA-protein interaction assays. PdePHT1;9 and PdeWRKY6 OE and RE poplar transgenic lines were used to confirm their positive regulation of shoot Pi concentrations, under both normal and low Pi availabilities. No interaction between PdeWRKY6 and PdeWRKY65 was observed at the DNA or protein levels. Collectively, these data suggest that the low Pi-responsive TFs PdeWRKY6 and PdeWRKY65 independently regulate the expression of PHT1;9 to modulate tissue Pi concentrations in poplar.


Asunto(s)
Populus , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Populus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Breed ; 43(8): 63, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37521313

RESUMEN

Optimal root system architecture (RSA) is essential for vigorous growth and yield in crops. Plants have evolved adaptive mechanisms in response to low phosphorus (LP) stress, and one of those is changes in RSA. Here, more than five million single-nucleotide polymorphisms (SNPs) obtained from whole-genome re-sequencing data (WGR) of an association panel of 370 oilseed rape (Brassica napus L.) were used to conduct a genome-wide association study (GWAS) of RSA traits of the panel at LP in "pouch and wick" system. Fifty-two SNPs were forcefully associated with lateral root length (LRL), total root length (TRL), lateral root density (LRD), lateral root number (LRN), mean lateral root length (MLRL), and root dry weight (RDW) at LP. There were significant correlations between phenotypic variation and the number of favorable alleles of the associated loci on chromosomes A06 (chrA06_20030601), C03 (chrC03_3535483), and C07 (chrC07_42348561), respectively. Three candidate genes (BnaA06g29270D, BnaC03g07130D, and BnaC07g43230D) were detected by combining transcriptome, candidate gene association analysis, and haplotype analysis. Cultivar carrying "CCGC" at BnaA06g29270DHap1, "CAAT" at BnaC03g07130DHap1, and "ATC" at BnaC07g43230DHap1 had greater LRL, LRN, and RDW than lines carrying other haplotypes at LP supply. The RSA of a cultivar harboring the three favorable haplotypes was further confirmed by solution culture experiments. These findings define exquisite insights into genetic architectures underlying B. napus RSA at LP and provide valuable gene resources for root breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01411-2.

6.
Mol Breed ; 43(7): 53, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37333997

RESUMEN

Oilseed rape (Brassica napus L.; B. napus) is an important oil crop worldwide. However, the genetic mechanisms of B. napus adaptations to low phosphate (P) stress are largely unknown. In this study, a genome-wide association study (GWAS) identified 68 SNPs significantly associated with seed yield (SY) under low P (LP) availability, and 7 SNPs significantly associated with phosphorus efficiency coefficient (PEC) in two trials. Among these SNPs, two, chrC07__39807169 and chrC09__14194798, were co-detected in two trials, and BnaC07.ARF9 and BnaC09.PHT1;2 were identified as candidate genes of them, respectively, by combining GWAS with quantitative reverse-transcription PCR (qRT-PCR). There were significant differences in the gene expression level of BnaC07.ARF9 and BnaC09.PHT1;2 between P-efficient and -inefficiency varieties at LP. SY_LP had a significant positive correlation with the gene expression level of both BnaC07.ARF9 and BnaC09.PHT1;2. BnaC07.ARF9 and BnaA01.PHR1 could directly bind the promoters of BnaA01.PHR1 and BnaC09.PHT1;2, respectively. Selective sweep analysis was conducted between ancient and derived B. napus, and detected 1280 putative selective signals. Within the selected region, a large number of genes related to P uptake, transport, and utilization were detected, such as purple acid phosphatase (PAP) family genes and phosphate transporter (PHT) family genes. These findings provide novel insights into the molecular targets for breeding P efficiency varieties in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01399-9.

7.
Environ Microbiol ; 24(4): 1902-1917, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35229442

RESUMEN

Bacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two-component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C-P bond. Numerous pseudomonads can use the environmentally abundant phosphonate species 2-aminoethylphosphonate (2AEP) as a source of C, N, or P, but only PhoBR has been shown to play a role in 2AEP utilization. On the other hand, utilization of 2AEP as a C and N source is considered substrate inducible. Here, using the plant-growth-promoting rhizobacterium Pseudomonas putida BIRD-1 we present evidence that 2AEP utilization is under dual regulation and only occurs upon depletion of C, N, or P, controlled by CbrAB, NtrBC, or PhoBR respectively. However, the presence of 2AEP was necessary for full gene expression, i.e. expression was substrate inducible. Mutation of a LysR-type regulator, termed AepR, upstream of the 2AEP transaminase-phosphonatase system (PhnWX), confirmed this dual regulatory mechanism. To our knowledge, this is the first study identifying coordination between global stress response and substrate-specific regulators in phosphonate metabolism.


Asunto(s)
Organofosfonatos , Pseudomonas putida , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Organofosfonatos/metabolismo , Fósforo/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
8.
Plant Physiol ; 186(3): 1616-1631, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831190

RESUMEN

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.sgn3.a-1, which accumulates twice as much Mg and a third more Ca in its leaves. We mapped braA.sgn3.a to a single recessive locus using a forward ionomic screen of chemically mutagenized lines with subsequent backcrossing and linked-read sequencing of second back-crossed, second filial generation (BC2F2) segregants. Confocal imaging revealed a disrupted root endodermal diffusion barrier, consistent with SGN3 encoding a receptor-like kinase required for normal formation of Casparian strips, as reported in thale cress (Arabidopsis thaliana). Analysis of the spatial distribution of elements showed elevated extracellular Mg concentrations in leaves of braA.sgn3.a-1, hypothesized to result from preferential export of excessive Mg from cells to ensure suitable cellular concentrations. This work confirms a conserved role of SGN3 in controlling nutrient homeostasis in B. rapa, and reveals mechanisms by which plants are able to deal with perturbed shoot element concentrations resulting from a "leaky" root endodermal barrier. Characterization of variation in leaf Mg and Ca accumulation across a mutagenized population of B. rapa shows promise for using such populations in breeding programs to increase edible concentrations of essential human and animal nutrients.


Asunto(s)
Brassica rapa/genética , Brassica rapa/metabolismo , Calcio/análisis , Calcio/metabolismo , Genes Recesivos , Magnesio/análisis , Magnesio/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
9.
J Exp Bot ; 73(14): 4753-4777, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35511123

RESUMEN

Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.


Asunto(s)
Brassica napus , Ácido Abscísico/metabolismo , Aclimatación , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Ann Bot ; 128(7): 919-930, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34490877

RESUMEN

BACKGROUND AND AIMS: Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes. METHODS: An association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha-1) and a sufficient P supply (P, 40 kg ha-1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies. KEY RESULTS: A total of 2127 SNPs were strongly associated (P < 6·25 × 10-07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply. CONCLUSION: Our results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.


Asunto(s)
Brassica napus , Brassica napus/genética , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Fósforo , Fitomejoramiento
11.
Accredit Qual Assur ; 26(2): 103-105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776220

RESUMEN

The 43rd meeting of the Reference Material Committee of ISO, ISO/REMCO, that was scheduled to take place in Milan, Italy, from 30 June to 3 July 2020 with Accredia, the Italian accreditation body and INRIM, the Italian Metrology Institute as the hosts, was cancelled due to the COVID-19 pandemic. This report shares the details of the important decision that was taken by the ISO Technical Management Board (TMB) in December 2020 to transform ISO/REMCO into an ISO technical committee, ISO/TC 334, Reference materials. The background that led to the decision is provided as well as the implications of the decision for the future of the development of guidance for the production and use of reference materials. The report also gives an update on the progress with the work program of the committee during the past year and the strategy for the future work of the committee.

12.
Ann Bot ; 126(1): 119-140, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32221530

RESUMEN

BACKGROUND AND AIMS: Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies. METHODS: Shoot and root concentrations of 11 mineral elements (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES) in a Brassica napus double haploid population grown at an optimal (OP) and a low phosphorus supply (LP) in an agar system. Shoot, root and plant contents, and the partitioning of mineral elements between shoot and root were calculated. KEY RESULTS: The tissue concentrations of B, Ca, Cu, K, Mg, Mn, Na, P and Zn were reduced by P starvation, while the concentration of Fe was increased by P starvation in the BnaTNDH population. A total of 133 and 123 QTLs for shoot and root ionomic traits were identified at OP and LP, respectively. A major QTL cluster on chromosome C07 had a significant effect on shoot Mg and S concentrations at LP and was narrowed down to a 2.1 Mb region using an advanced backcross population. CONCLUSIONS: The tissue concentration and partitioning of each mineral element was affected differently by P starvation. There was a significant difference in mineral element composition between shoots and roots. Identification of the genes underlying these QTLs will enhance our understanding of processes affecting the uptake and partitioning of mineral elements in Brassica napus.


Asunto(s)
Brassica napus/genética , Fenotipo , Fosfatos , Fósforo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo/genética
13.
Plant Cell ; 26(7): 2818-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25082855

RESUMEN

Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.


Asunto(s)
Arabidopsis/genética , Brassica/genética , Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Genoma de Planta/genética , Genómica/métodos , Arabidopsis/metabolismo , Brassica/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mapeo Cromosómico , Productos Agrícolas , Regulación de la Expresión Génica de las Plantas , Interacción Gen-Ambiente , Mutación Missense , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo/genética , Vacuolas/metabolismo
14.
Environ Microbiol ; 18(10): 3535-3549, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27233093

RESUMEN

Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P.


Asunto(s)
Fósforo/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Pseudomonas stutzeri/genética , Microbiología del Suelo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Genómica , Fosfatos/metabolismo , Proteómica , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas stutzeri/metabolismo , Regulón , Rizosfera
15.
Plant Cell ; 24(1): 15-20, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22227890

RESUMEN

Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Therefore, understanding the development and architecture of roots holds potential for the manipulation of root traits to improve the productivity and sustainability of agricultural systems and to better understand and manage natural ecosystems. While lateral root development is a traceable process along the primary root and different stages can be found along this longitudinal axis of time and development, root system architecture is complex and difficult to quantify. Here, we comment on assays to describe lateral root phenotypes and propose ways to move forward regarding the description of root system architecture, also considering crops and the environment.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Modelos Teóricos
16.
Plant Cell ; 24(6): 2262-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22693282

RESUMEN

Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.


Asunto(s)
Sequías , Fenómenos Fisiológicos de las Plantas , Proteínas Quinasas/fisiología , Proyectos de Investigación , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico
17.
New Phytol ; 198(2): 546-556, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23421495

RESUMEN

High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10-280 mg l(-1) in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25 mg l(-1), particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.


Asunto(s)
Micorrizas/efectos de los fármacos , Micorrizas/fisiología , Fósforo/farmacología , Plantas/efectos de los fármacos , Plantas/microbiología , Suelo/química , Análisis por Conglomerados , Recuento de Colonia Microbiana , Enzimas de Restricción del ADN/metabolismo , Micorrizas/crecimiento & desarrollo , Glycine max/microbiología , Factores de Tiempo , Viola/microbiología , Zea mays/microbiología
18.
Ann Bot ; 112(2): 381-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23172414

RESUMEN

BACKGROUND AND AIMS: Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. METHODS: Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus ['Tapidor' × 'Ningyou 7' (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. KEY RESULTS: In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. CONCLUSIONS: High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.


Asunto(s)
Brassica napus/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Biomasa , Brassica napus/anatomía & histología , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Mapeo Cromosómico , Genotipo , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantones/anatomía & histología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
19.
BMC Genomics ; 13: 601, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23134692

RESUMEN

BACKGROUND: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M. cannonballus and melon roots in either susceptible or resistant genotypes is lacking. In the present study, we used a melon oligo-based microarray to investigate the gene expression responses of two melon genotypes, Cucumis melo 'Piel de sapo' ('PS') and C. melo 'Pat 81', with contrasting resistance to the disease. This study was carried out at 1 and 3 days after infection (DPI) by M. cannonballus. RESULTS: Our results indicate a dissimilar behavior of the susceptible vs. the resistant genotypes from 1 to 3 DPI. 'PS' responded with a more rapid infection response than 'Pat 81' at 1 DPI. At 3 DPI the total number of differentially expressed genes identified in 'PS' declined from 451 to 359, while the total number of differentially expressed transcripts in 'Pat 81' increased from 187 to 849. Several deregulated transcripts coded for components of Ca2+ and jasmonic acid (JA) signalling pathways, as well as for other proteins related to defence mechanisms. Transcriptional differences in the activation of the JA-mediated response in 'Pat 81' compared to 'PS' suggested that JA response might be partially responsible for their observed differences in resistance. CONCLUSIONS: As a result of this study we have identified for the first time a set of candidate genes involved in the root response to the infection of the pathogen causing melon vine decline. This information is useful for understanding the disease progression and resistance mechanisms few days after inoculation.


Asunto(s)
Citrullus/genética , Cucumis melo/genética , Micosis/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Sordariales , Citrullus/microbiología , Cucumis melo/microbiología , Perfilación de la Expresión Génica , Micosis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Análisis de Componente Principal
20.
Plant Physiol ; 156(3): 1639-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21593215

RESUMEN

Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 µL L(-1) ethylene or 1 µL L(-1) 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 µL L(-1)) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.


Asunto(s)
Ciclopropanos/farmacología , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cebollas/crecimiento & desarrollo , Cebollas/genética , Biomasa , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Genes de Plantas/genética , Cebollas/citología , Cebollas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Temperatura , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA