Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin Med J (Engl) ; 134(20): 2475-2482, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34507320

RESUMEN

BACKGROUND: There is growing evidence that 5-fluorouracil (5-FU) combined with therapeutic trauma can effectively induce skin repigmentation in vitiligo patients who are unresponsive to conventional treatments. Previous studies have mainly focused on identifying the antimitotic activity of 5-FU for the treatment of skin cancer, but few studies have investigated its extra-genotoxic actions favoring melanocyte recruitment. METHODS: We utilized the full thickness excisional skin wound model in Dct-LacZ transgenic mice to dynamically assess the migration of melanocytes in the margins of wounds treated with or without 5-FU. The in-situ expression of CXCL12 was examined in the wound beds using immunofluorescence staining. Quantitative real-time polymerase chain reaction and Western blotting analyses were performed to detect the expression levels of CXCL12 mRNA and protein in primary mouse dermal fibroblasts treated with or without 5-FU. Transwell assays and fluorescein isothiocyanate (FITC)-phalloidin staining were used to observe cell migration and filamentous actin (F-actin) changes of melan-a murine melanocytes. RESULTS: Whole mount and cryosection X-gal staining showed that the cell numbers of LacZ-positive melanocytes were much higher in the margins of dorsal and tail skin wounds treated with 5-FU compared with the controls. Meanwhile, CXCL12 immunostaining was significantly increased in the dermal compartment of wounds treated with 5-FU (control vs. 5-FU, 22.47 ±â€Š8.85 vs. 44.69 ±â€Š5.97, P < 0.05). Moreover, 5-FU significantly upregulated the expression levels of CXCL12 mRNA (control vs. 5-FU, 1.00 ±â€Š0.08 vs. 1.54 ±â€Š0.06, P < 0.05) and protein (control vs. 5-FU, 1.00 ±â€Š0.06 vs. 2.93 ±â€Š0.10, P < 0.05) in cultured fibroblasts. Inhibition of the CXCL12/CXCR4 axis suppressed melanocyte migration in vitro using a CXCL12 small interfering RNA (siRNA) or a CXCR4 antagonist (AMD3100). CONCLUSION: 5-FU possesses a pro-pigmentary activity through activation of the CXCL12/CXCR4 axis to drive the chemotactic migration of melanocytes.


Asunto(s)
Quimiocina CXCL12 , Fluorouracilo , Animales , Movimiento Celular , Proliferación Celular , Quimiocina CXCL12/genética , Fibroblastos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Ratones , ARN Mensajero , Receptores CXCR4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA