Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(18): 12629-12640, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37128961

RESUMEN

The surface exchange coefficient (k) of porous mixed ionic-electronic conductors (MIECs) determines the device-level electrochemical performance of solid oxide cells. However, a great difference is reported for k values, which are measured using presently available technologies of electrical conductivity relaxation (ECR), electrochemical impedance spectroscopy (EIS), and oxygen isotope exchange (OIE). In terms of this issue, this perspective paper estimates the possible physiochemical processes for the oxygen reduction reaction (ORR) in porous MIECs by comparing the oxygen supply/consumption fluxes through calculation. Then, the potential problems associated with ECR, EIS, and OIE for application in porous materials are discussed regarding theory, assumptions, sample requirements, and data processing. Finally, gas diffusion effects are revealed by comparing the simulated and measured ECR profiles, which show that the ORR process can be significantly delayed by gas diffusion. This perspective aims to recommend a reasonable method to characterize the true ORR kinetics of porous electrodes and quantify the effect of gas diffusion.

2.
Pestic Biochem Physiol ; 194: 105507, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532360

RESUMEN

As a common fungicide, difenoconazole (DFZ) is widespread in the natural environment and poses many potential threats. Carp makes up a significant proportion of China's freshwater aquaculture population and are vulnerable to the DFZ. Therefore, this study investigated the effects of DFZ (0.488 mg/L and 1.953 mg/L) exposure for 4 d on the intestinal tissues of carp and explored the mechanisms. Specifically, DFZ exposure caused pathological damage to the intestinal tissues of carp, reducing the expression levels of intestinal tight junction proteins, and leading to damage to the intestinal barrier. In addition, DFZ exposure activated the NF-κB signaling pathway, increasing the levels of pro-inflammatory factors (TNF-α, IL-1ß, IL-6) and decreasing the levels of anti-inflammatory factors (IL-10, TGF-ß1). As disruption of the intestinal barrier is closely linked to oxidative stress and apoptosis, we have conducted research in both areas for this reason. The results showed that DFZ exposure elevated reactive oxygen species in carp intestines, decreased antioxidant enzyme activity, and suppressed the expression of oxidative stress-related genes. TUNEL results showed that DFZ induced the onset of apoptosis. In addition, the expression levels of apoptosis-related genes and proteins were examined. Western blotting results showed that DFZ could upregulate the protein expression levels of Bax, Cytochrome C and downregulate the protein levels of Bcl-2. qPCR results showed that DFZ could upregulate the transcript levels of Bax, Caspase-3, Caspase-8 and Caspase-9 and downregulate the transcript levels of Bcl-2 transcript levels. This suggests that DFZ can induce apoptosis of mitochondrial pathway in carp intestine. In conclusion, DFZ can induce oxidative stress and apoptosis in carp intestine, leading to the destruction of intestinal physical barrier and the occurrence of inflammation. Our data support the idea that oxidative stress and apoptosis are important triggers of pesticide-induced inflammatory bowel illness.


Asunto(s)
Carpas , Animales , Carpas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/farmacología , Intestinos , Estrés Oxidativo , Antioxidantes/farmacología , Apoptosis , FN-kappa B/metabolismo
3.
Pestic Biochem Physiol ; 195: 105531, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666586

RESUMEN

Avermectin (AVM) is a widely used insecticide. Due to its sensitive toxicity to aquatic organisms, the toxicology of AVM on fish intestines remains unclear. Here, we established a 96 h AVM acute toxicity model to explore the effects of AVM on the intestinal tract of carp. The 96 h LC50 of carps exposed to AVM was 24.04 µg/L, 12.02 µg/L was selected as the high-dose group and 3.005 µg/L was selected as the low-dose group. After 96 h of exposure, intestinal tissues were collected and subsequently analyzed for histopathology, the activities of antioxidant oxidases (CAT, SOD, GSH-Px), and the expression of mRNA associated with oxidative stress, inflammation, and apoptosis. Our study showed that AVM exposure caused intestinal damage in carp, decreased the expression of the tight junction protein gene, activated oxidative stress, induced apoptosis, and induced intestinal inflammation in carp. Therefore, we demonstrated that AVM exposure compromised the integrity of the intestinal barrier in carp, activated oxidative stress, induced endogenous apoptosis, and induced intestinal inflammatory responses. These results indicate that AVM, as a drug-sensitive to aquatic organisms, has a much more complex toxic effect on the fish intestinal tract, which provides a new perspective for studying the toxicology of AVM on the fish intestinal tract.


Asunto(s)
Carpas , Animales , Estrés Oxidativo , Apoptosis , Inflamación/inducido químicamente , Intestinos
4.
Small ; 18(49): e2205190, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310135

RESUMEN

Triple-conducting (H+ /O2- /e- ) cathodes are a vital constituent of practical protonic ceramic fuel cells. However, seeking new candidates has remained a grand challenge on account of the limited material system. Though triple conduction can be achieved by mechanically mixing powders uniformly consisting of oxygen ion-electron and proton conductors, the catalytic activity and durability are still restricted. By leveraging this fact, a highly efficient strategy to construct a triple-conductive region through surface self-assembly protonation based on the robust double-perovskite PrBaCo1.92 Zr0.08 O5+δ , is proposed. In situ exsolution of BaZrO3 -based nanoparticles growing from the host oxide under oxidizing atmosphere by liberating Ba/Zr cations from A/B-sites readily forms proton transfer channels. The surface reconstructing heterostructures improve the structural stability, reduce the thermal expansion, and accelerate the oxygen reduction catalytic activity of such nanocomposite cathodes. This design route significantly boosts electrochemical performance with maximum peak power densities of 1453 and 992 mW cm-2 at 700 and 650 °C, respectively, 86% higher than the parent PrBaCo2 O5+δ cathode, accompanied by a much improved operational durability of 140 h at 600 °C.

5.
ACS Appl Mater Interfaces ; 15(6): 8253-8262, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36734332

RESUMEN

Double perovskite oxide PrBaFe2O5+δ is a potential cathode material for intermediate-temperature solid oxide fuel cells. To improve its electrochemical performance, the trivalent element Ga is investigated to partially replace Fe, forming PrBaFe2-xGaxO5+δ (PBFGx, x = 0.05, 0.1, and 0.15). The doping effects on physicochemical properties and electrochemical properties are analyzed regarding the phase structures, element valence states, amount of oxygen vacancies, content of oxygen species, oxygen surface exchange coefficients (kchem), electrochemical polarization resistance, and single-cell performance. Specifically, PBFG0.1 exhibits improved kchem, such as a 19% improvement from 4.09 × 10-4 to 4.86 × 10-4 cm s-1 at 750 °C, due to the increased concentration of reactive oxygen species and oxygen vacancies. Consequently, the interfacial polarization resistance is decreased by 28% from 0.057 to 0.041 Ω cm2 at 800 °C. The subreaction steps of the oxygen reduction reaction in the PBFG0.1 cathode are further investigated, which suggests that the oxygen dissociation process is greatly enhanced by doping Ga. Meanwhile, doping Ga increases the peak power density of the anode-supported single cell by 36% from 629 to 856 mW cm-2 at 800 °C. The single cell with the PBFG0.1 cathode also exhibits good stability in 100 h of long-term operation at 750 °C.

6.
ACS Appl Mater Interfaces ; 14(25): 28854-28864, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35727035

RESUMEN

Solid oxide electrolysis cell (SOEC) is a potential technique to efficiently convert CO2 greenhouse gas into valuable fuels. Thus, there is significant interest in developing highly active and stable electrocatalysts for the CO2 reduction reaction (CO2RR). Herein, a Ni and F co-doping strategy is proposed to facilitate the exsolution reaction and form a new cathode, Ni-Fe alloy nanoparticles embedded in ceramic Sr2Fe1.5Mo0.5O6-δ (SFM) doped with fluorine. F-doping and Ni-Fe exsolution enhance CO2 adsorption by a factor of 2.4 and increase the surface reaction rate constant (kchem) for CO2RR from 6.79 × 10-5 to 18.1 × 10-5 cm s-1, as well as the oxygen chemical bulk diffusion coefficient (Dchem) from 9.42 × 10-6 to 19.1 × 10-6 cm2 s-1 at 800 °C. Meanwhile, the interfacial polarization resistance (Rp) decreases by 52%, from 0.64 to 0.31 Ω cm2. At 800 °C and 1.5 V, an extremely high current density of 2.66 A cm-2 and a stability test over 140 h are achieved for direct CO2 electrolysis in the SOEC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA