Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Appl Toxicol ; 44(9): 1446-1453, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797990

RESUMEN

Voltage-dependent K+ (Kv) channels play an important role in restoring the membrane potential to its resting state, thereby maintaining vascular tone. In this study, native smooth muscle cells from rabbit coronary arteries were used to investigate the inhibitory effect of quetiapine, an atypical antipsychotic agent, on Kv channels. Quetiapine showed a concentration-dependent inhibition of Kv channels, with an IC50 of 47.98 ± 9.46 µM. Although quetiapine (50 µM) did not alter the steady-state activation curve, it caused a negative shift in the steady-state inactivation curve. The application of 1 and 2 Hz train steps in the presence of quetiapine significantly increased the inhibition of Kv current. Moreover, the recovery time constants from inactivation were prolonged in the presence of quetiapine, suggesting that its inhibitory action on Kv channels is use (state)-dependent. The inhibitory effects of quetiapine were not significantly affected by pretreatment with Kv1.5, Kv2.1, and Kv7 subtype inhibitors. Based on these findings, we conclude that quetiapine inhibits Kv channels in both a concentration- and use (state)-dependent manner. Given the physiological significance of Kv channels, caution is advised in the use of quetiapine as an antipsychotic due to its potential side effects on cardiovascular Kv channels.


Asunto(s)
Antipsicóticos , Vasos Coronarios , Músculo Liso Vascular , Miocitos del Músculo Liso , Bloqueadores de los Canales de Potasio , Canales de Potasio con Entrada de Voltaje , Fumarato de Quetiapina , Fumarato de Quetiapina/farmacología , Animales , Conejos , Antipsicóticos/farmacología , Antipsicóticos/toxicidad , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Vasos Coronarios/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Masculino , Relación Dosis-Respuesta a Droga , Potenciales de la Membrana/efectos de los fármacos , Células Cultivadas
2.
Artículo en Inglés | MEDLINE | ID: mdl-38802577

RESUMEN

PURPOSE: This study aimed to investigate the etiology of hearing loss, including genetic variants, in individuals who underwent cochlear implantation (CI) in their teens to thirties. It also sought to analyze post-CI speech performance and identify prognostic factors affecting CI outcomes in this age group. METHODS: We conducted a retrospective review of 421 cochlear implant patients at Seoul National University Bundang Hospital, focusing on 63 subjects aged 10-39 years who underwent their first CI by a single surgeon between July 2018 and June 2022. The study included audiologic evaluation, molecular genetic testing, and analysis of speech performance post-CI. Statistical analyses were performed using SPSS 25 and GraphPad Prism 7. RESULTS: Among 63 participants (M:F, 24:39), nine underwent CI in their teens, 24 in their 20 s, and 30 in their 30 s. Most of them (40, 63.5%) had postlingual deafness. The study found that 65.2% (40/63) of subjects received a genetic diagnosis, with DFNB4 being the most common etiology (37.5%, 15/40). Post-CI speech evaluation showed an average sentence score of 80% across all subjects. Factors such as the onset of hearing loss, duration of deafness (DoD), and preoperative Speech Intelligibility Rating (SIR) significantly influenced CI outcomes. Notably, longer DoD was associated with poorer CI outcomes, but this did not affect individuals with postlingual hearing loss as much. CONCLUSION: The study concludes that in individuals aged 10-39 undergoing CI, the onset of hearing loss and preoperative SIR are critical predictors of postoperative outcomes. CI is recommended for those with postlingual hearing loss in this age group, irrespective of the DoD. The study highlights the importance of genetic factors especially DFNB4 in hearing loss etiology and underscores the value of the relatively easy-to-evaluate factor, preoperative SIR in predicting CI outcomes.

3.
Molecules ; 29(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542998

RESUMEN

The increasing utilization of artificial intelligence algorithms in drug development has proven to be highly efficient and effective. One area where deep learning-based approaches have made significant contributions is in drug repositioning, enabling the identification of new therapeutic applications for existing drugs. In the present study, a trained deep-learning model was employed to screen a library of FDA-approved drugs to discover novel inhibitors targeting JAK2. To accomplish this, reference datasets containing active and decoy compounds specific to JAK2 were obtained from the DUD-E database. RDKit, a cheminformatic toolkit, was utilized to extract molecular features from the compounds. The DeepChem framework's GraphConvMol, based on graph convolutional network models, was applied to build a predictive model using the DUD-E datasets. Subsequently, the trained deep-learning model was used to predict the JAK2 inhibitory potential of FDA-approved drugs. Based on these predictions, ribociclib, topiroxostat, amodiaquine, and gefitinib were identified as potential JAK2 inhibitors. Notably, several known JAK2 inhibitors demonstrated high potential according to the prediction results, validating the reliability of our prediction model. To further validate these findings and confirm their JAK2 inhibitory activity, molecular docking experiments were conducted using tofacitinib-an FDA-approved drug for JAK2 inhibition. Experimental validation successfully confirmed our computational analysis results by demonstrating that these novel drugs exhibited comparable inhibitory activity against JAK2 compared to tofacitinib. In conclusion, our study highlights how deep learning models can significantly enhance virtual screening efforts in drug discovery by efficiently identifying potential candidates for specific targets such as JAK2. These newly discovered drugs hold promises as novel JAK2 inhibitors deserving further exploration and investigation.


Asunto(s)
Inteligencia Artificial , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Reproducibilidad de los Resultados , Redes Neurales de la Computación
4.
Eur J Pharmacol ; 972: 176589, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631503

RESUMEN

We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 µM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 µM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 µM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 µM) and XE991 (10 µM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 µM) and cyclopiazonic acid (10 µM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 µM) and KT5720 (1 µM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Arteria Femoral , Glucósidos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción de Señal , Tiofenos , Vasodilatación , Animales , Conejos , Arteria Femoral/efectos de los fármacos , Arteria Femoral/fisiología , Vasodilatación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Tiofenos/farmacología , Masculino , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Vasodilatadores/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores
5.
Clin Exp Otorhinolaryngol ; 17(1): 46-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326998

RESUMEN

OBJECTIVES: The recent expansion of eligibility for cochlear implantation (CI) by the U.S. Food and Drug Administration (FDA) to include infants as young as 9 months has reignited debates concerning the clinically appropriate cut-off age for pediatric CI. Our study compared the early postoperative trajectories of receptive and expressive language development in children who received CI before 9 months of age with those who received it between 9 and 12 months. This study involved a unique pediatric cohort with documented etiology, where the timing of CI was based on objective criteria and efforts were made to minimize the influence of parental socioeconomic status. METHODS: A retrospective review of 98 pediatric implantees recruited at a tertiary referral center was conducted. The timing of CI was based on auditory and language criteria focused on the extent of delay corresponding to the bottom 1st percentile of language development among age-matched controls, with patients categorized into very early (CI at <9 months), early (CI at 9-12 months) and delayed (CI at 12-18 months) CI groups. Postoperative receptive/expressive language development was assessed using the Sequenced Language Scale for Infants receptive and expressive standardized scores and percentiles. RESULTS: Only the very early CI group showed significant improvements in receptive language starting at 3 months post-CI, aligning with normal-hearing peers by 9 months and maintaining this level until age 2 years. During this period (<2 years), all improvements were more pronounced in receptive language than in expressive language. CONCLUSION: CI before 9 months of age significantly improved receptive language development compared to later CI, with improvements sustained at least up to the age of 2. This study supports the consideration of earlier CI, beyond pediatric Food and Drug Administration labeling criteria (>9 months), in children with profound deafness who have a clear deafness etiology and language development delays (<1st percentile).

6.
Acta Diabetol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103505

RESUMEN

AIMS: The present study investigated the vasorelaxant mechanisms of an oral antidiabetic drug, anagliptin, using phenylephrine (Phe)-induced pre-contracted rabbit aortic rings. METHODS: Arterial tone measurement was performed in rabbit thoracic aortic rings. RESULTS: Anagliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the classical voltagedependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly decreased the vasorelaxant effect of anagliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and the large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not attenuate the vasorelaxant effect. Furthermore, the vasorelaxant response of anagliptin was effectively inhibited by pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid. Neither cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) nor cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) reduced the vasorelaxant effect of anagliptin. Similarly, the anagliptin-induced vasorelaxation was independent of the endothelium. CONCLUSIONS: Based on these results, we suggest that anagliptin-induced vasorelaxation in rabbit aortic smooth muscle occurs by activating Kv channels and the SERCA pump, independent of other vascular K+ channels, cAMP/PKA- or cGMP/PKG-related signaling pathways, and the endothelium.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39104018

RESUMEN

Objectives: FDXR encodes the mitochondrial ferredoxin reductase, which is associated with auditory neuropathy spectrum disorder (ANSD) and optic atrophy. Only two studies have described FDXRrelated hearing loss. The auditory rehabilitation outcomes of this disease entity have not been investigated, and the pathophysiologic mechanism is not well elucidated. Here we report a hearingimpaired subject with co-segregation of the FDXR variant and post-synaptic type ANSD, who underwent cochlear implantation (CI) with favorable outcomes. We suggest a possible pathophysiologic mechanism of adult-onset ANSD via mitochondrial dysfunction. Methods: A 35-year-old woman was ascertained to have ANSD. Exome sequencing identified the genetic cause of hearing loss, and functional study measuring mitochondrial activity was performed to provide molecular evidence of pathophysiology. Expression of FDXR in the mouse cochlea was evaluated by immunohistochemistry. Intraoperatively, electrically-evoked compound action potential (ECAP) responses were measured, and mapping parameters were adjusted accordingly. Audiological outcomes were monitored for over 1 year. Results: In lymphoblastoid cell lines (LCLs) carrying a novel FDXR variant, decreased ATP and MtMP levels and increased ROS levels were observed compared to control LCLs. These dysfunctions were restored by administering mitochondria isolated from umbilical cord mesenchymal stem cells, confirming the pathogenic potential of this variant via mitochondrial dysfunction. Partial ECAP responses during CI and FDXR expression in the mouse cochlea indicate that FDXR-related ANSD is postsynaptic. By increasing the pulse width during mapping, the patient's CI outcomes showed significant improvement over 1-year post-CI. Conclusion: Post-synaptic ANSD due to a novel FDXR variant linked to mitochondrial dysfunction was identified first in a Korean, and 1-year post CI outcomes were reported for the first time in the literature. Excellent audiologic results were obtained, and our results reiterate the correlation between genotype and CI outcomes in ANSD.

8.
Front Cell Infect Microbiol ; 14: 1354880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465236

RESUMEN

Plasmodium vivax, the most widespread human malaria parasite, and P. knowlesi, an emerging Plasmodium that infects humans, are the phylogenetically closest malarial species that infect humans, which may induce cross-species reactivity across most co-endemic areas in Southeast Asia. The thrombospondin-related anonymous protein (TRAP) family is indispensable for motility and host cell invasion in the growth and development of Plasmodium parasites. The merozoite-specific TRAP (MTRAP), expressed in blood-stage merozoites, is supposed to be essential for human erythrocyte invasion. We aimed to characterize MTRAPs in blood-stage P. vivax and P. knowlesi parasites and ascertain their cross-species immunoreactivity. Recombinant P. vivax and P. knowlesi MTRAPs of full-length ectodomains were expressed in a mammalian expression system. The MTRAP-specific immunoglobulin G, obtained from immune animals, was used in an immunofluorescence assay for subcellular localization and invasion inhibitory activity in blood-stage parasites was determined. The cross-species humoral immune responses were analyzed in the sera of patients with P. vivax or P. knowlesi infections. The MTRAPs of P. vivax (PvMTRAP) and P. knowlesi (PkMTRAP) were localized on the rhoptry body of merozoites in blood-stage parasites. Both anti-PvMTRAP and anti-PkMTRAP antibodies inhibited erythrocyte invasion of blood-stage P. knowlesi parasites. The humoral immune response to PvMTRAP showed high immunogenicity, longevity, and cross-species immunoreactivity with P. knowlesi. MTRAPs are promising candidates for development of vaccines and therapeutics against vivax and knowlesi malaria.


Asunto(s)
Malaria Vivax , Malaria , Parásitos , Plasmodium , Animales , Humanos , Plasmodium vivax/genética , Parásitos/metabolismo , Merozoítos , Trombospondinas/metabolismo , Plasmodium/metabolismo , Malaria/parasitología , Malaria Vivax/parasitología , Proteínas Protozoarias/metabolismo , Mamíferos/metabolismo
9.
PLoS One ; 19(2): e0298087, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335219

RESUMEN

Malaria eradication efforts in resource-limited areas require a rapid, economical, and accurate tool for detecting of the low parasitemia. The malaria rapid diagnostic test (mRDT) is the most suitable for on-site detection of the deadliest form of malaria, Plasmodium falciparum. However, the deletions of histidine rich protein 2 and 3 genes are known to compromise the effectiveness of mRDT. One of the approaches that have been explored intensively for on-site diagnostics is the loop-mediated isothermal amplification (LAMP). LAMP is a one-step amplification that allows the detection of Plasmodium species in less than an hour. Thus, this study aims to present a new primer set to enhance the performance of a colorimetric LAMP (cLAMP) for field application. The primer binding regions were selected within the A-type of P. falciparum 18S rRNA genes, which presents a dual gene locus in the genome. The test result of the newly designed primer indicates that the optimal reaction condition for cLAMP was 30 minutes incubation at 65°C, a shorter incubation time compared to previous LAMP detection methods that typically takes 45 to 60 minutes. The limit of detection (LoD) for the cLAMP using our designed primers and laboratory-grown P. falciparum (3D7) was estimated to be 0.21 parasites/µL which was 1,000-fold higher than referencing primers. Under optimal reaction condition, the new primer sets showed the sensitivity (100%, 95% CI: 80.49-100%) and specificity (100%, 95% CI: 94.64-100%) with 100% (95% CI: 95.70-100%) accuracy on the detection of dried blood spots from Malawi (n = 84). Briefly, the newly designed primer set for P. falciparum detection exhibited high sensitivity and specificity compared to referenced primers. One great advantage of this tool is its ability to be detected by the naked eye, enhancing field approaches. Thus, this tool has the potential to be effective for accurate early parasite detection in resource-limited endemic areas.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum/genética , Colorimetría , Sensibilidad y Especificidad , Malaria/parasitología , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos
10.
Int Neurourol J ; 27(4): 243-251, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38171324

RESUMEN

PURPOSE: Lithotomy position has been widely used in the various urologic surgery. Occasionally sensory and motor problems of the lower extremities are occurred due to the lithotomy position and these deficits may be related with sciatic nerve injury (SNI). Inflammatory process is a factor to induce functional impairment after SNI. Therefore, we evaluated the role of adenosine A2A receptor agonists, polydeoxyribonucleotide (PDRN) showing anti-inflammatory effect on locomotor function following SNI in rats. METHODS: Sciatic nerve was compressed with surgical clips for 1 minute after exposing of right sciatic nerve. After 3 days of SNI, PDRN (2, 4, and 8 mg/kg) was applied to the damaged area of sciatic nerve once daily for 10 days. Walking track analysis was conducted for locomotor function and plantar test was performed for thermal pain sensitivity. Level of cyclic adenosine-3´,5´-monophosphate (cAMP) were measured using enzyme-linked immunosorbent assay. Western blot analysis was performed for tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, cAMP response element binding protein (CREP), vascular endothelial growth factor (VEGF). Immunofluorescence for neurofilament was also conducted. RESULTS: Locomotor function was decreased and thermal pain sensitivity was increased by SNI. SNI enhanced proinflammatory cytokines' production, such as TNF-α and IL-1ß, while suppressed CREP phosphorylation and cAMP level. SNI also reduced the expression of VEGF and neurofilaments. However, treatment with PDRN inhibited proinflammatory cytokines' production and upregulated CREP phosphorylation and cAMP expression. PDRN also enhanced the expression of VEGF and neurofilaments. As a result, PDRN improved locomotor function and alleviated thermal hyperalgesia after SNI. CONCLUSION: PDRN has shown potential to be used as an effective treatment for neuropathic pain.

11.
Front Cell Infect Microbiol ; 13: 1321240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38282613

RESUMEN

Plasmodium vivax is the most widely distributed human malaria parasite. The eradication of vivax malaria remains challenging due to transmission of drug-resistant parasite and dormant liver form. Consequently, anti-malarial drugs with novel mechanisms of action are urgently demanded. Glucose uptake blocking strategy is suggested as a novel mode of action that leads to selective starvation in various species of malaria parasites. The role of hexose transporter 1 in Plasmodium species is glucose uptake, and its blocking strategies proved to successfully induce selective starvation. However, there is limited information on the glucose uptake properties via P. vivax hexose transporter 1 (PvHT1). Thus, we focused on the PvHT1 to precisely identify its properties of glucose uptake. The PvHT1 North Korean strain (PvHT1NK) expressed Xenopus laevis oocytes mediating the transport of [3H] deoxy-D-glucose (ddGlu) in an expression and incubation time-dependent manner without sodium dependency. Moreover, the PvHT1NK showed no exchange mode of glucose in efflux experiments and concentration-dependent results showed saturable kinetics following the Michaelis-Menten equation. Non-linear regression analysis revealed a Km value of 294.1 µM and a Vmax value of 1,060 pmol/oocyte/hr, and inhibition experiments showed a strong inhibitory effect by glucose, mannose, and ddGlu. Additionally, weak inhibition was observed with fructose and galactose. Comparison of amino acid sequence and tertiary structure between P. falciparum and P. vivax HT1 revealed a completely conserved residue in glucose binding pocket. This result supported that the glucose uptake properties are similar to P. falciparum, and PfHT1 inhibitor (compound 3361) works in P. vivax. These findings provide properties of glucose uptake via PvHT1NK for carbohydrate metabolism and support the approaches to vivax malaria drug development strategy targeting the PvHT1 for starving of the parasite.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Plasmodium vivax , Plasmodium falciparum , Glucosa/metabolismo , Malaria Falciparum/parasitología
12.
Front Cell Infect Microbiol ; 13: 1314533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111629

RESUMEN

The zoonotic malaria parasite Plasmodium knowlesi is an important public health concern in Southeast Asia. Invasion of host erythrocytes is essential for parasite growth, and thus, understanding the repertoire of parasite proteins that enable this process is vital for identifying vaccine candidates and how some species are able to cause zoonotic infection. Merozoite surface protein 1 (MSP1) is found in all malaria parasite species and is perhaps the most well-studied as a potential vaccine candidate. While MSP1 is encoded by a single gene in P. falciparum, all other human infective species (P. vivax, P. knowlesi, P. ovale, and P. malariae) additionally encode a divergent paralogue known as MSP1P, and little is known about its role or potential functional redundancy with MSP1. We, therefore, studied the function of P. knowlesi merozoite surface protein 1 paralog (PkMSP1P), using both recombinant protein and CRISPR-Cas9 genome editing. The recombinant 19-kDa C-terminus of PkMSP1P (PkMSP1P-19) was shown to bind specifically to human reticulocytes. However, immunoblotting data suggested that PkMSP1P-19-induced antibodies can recognize PkMSP1-19 and vice versa, confounding our ability to separate the properties of these two proteins. Targeted disruption of the pkmsp1p gene profoundly impacts parasite growth, demonstrating for the first time that PkMSP1P is important in in vitro growth of P. knowlesi and likely plays a distinct role from PkMSP1. Importantly, the MSP1P KO also enabled functional characterization of the PkMSP1P-19 antibodies, revealing clear immune cross-reactivity between the two paralogues, highlighting the vital importance of genetic studies in contextualizing recombinant protein studies.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium knowlesi , Vacunas , Humanos , Proteína 1 de Superficie de Merozoito/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Malaria/parasitología , Eritrocitos/parasitología , Anticuerpos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA