Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35808154

RESUMEN

In a colonoscopy, accurate computer-aided polyp detection and segmentation can help endoscopists to remove abnormal tissue. This reduces the chance of polyps developing into cancer, which is of great importance. In this paper, we propose a neural network (parallel residual atrous pyramid network or PRAPNet) based on a parallel residual atrous pyramid module for the segmentation of intestinal polyp detection. We made full use of the global contextual information of the different regions by the proposed parallel residual atrous pyramid module. The experimental results showed that our proposed global prior module could effectively achieve better segmentation results in the intestinal polyp segmentation task compared with the previously published results. The mean intersection over union and dice coefficient of the model in the Kvasir-SEG dataset were 90.4% and 94.2%, respectively. The experimental results outperformed the scores achieved by the seven classical segmentation network models (U-Net, U-Net++, ResUNet++, praNet, CaraNet, SFFormer-L, TransFuse-L).


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Pólipos Intestinales , Redes Neurales de la Computación , Colonoscopía , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pólipos Intestinales/diagnóstico por imagen
2.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36433298

RESUMEN

Melanoma is a main factor that leads to skin cancer, and early diagnosis and treatment can significantly reduce the mortality of patients. Skin lesion boundary segmentation is a key to accurately localizing a lesion in dermoscopic images. However, the irregular shape and size of the lesions and the blurred boundary of the lesions pose significant challenges for researchers. In recent years, pixel-level semantic segmentation strategies based on convolutional neural networks have been widely used, but many methods still suffer from the inaccurate segmentation of fuzzy boundaries. In this paper, we proposed a multi-scale hybrid attentional convolutional neural network (MHAU-Net) for the precise localization and segmentation of skin lesions. MHAU-Net has four main components: multi-scale resolution input, hybrid residual attention (HRA), dilated convolution, and atrous spatial pyramid pooling. Multi-scale resolution inputs provide richer visual information, and HRA solves the problem of blurred boundaries and enhances the segmentation results. The Dice, mIoU, average specificity, and sensitivity on the ISIC2018 task 1 validation set were 93.69%, 90.02%, 92.7% and 93.9%, respectively. The segmentation metrics are significantly better than the latest DCSAU-Net, UNeXt, and U-Net, and excellent segmentation results are achieved on different datasets. We performed model robustness validations on the Kvasir-SEG dataset with an overall sensitivity and average specificity of 95.91% and 96.28%, respectively.


Asunto(s)
Enfermedades de la Piel , Neoplasias Cutáneas , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Redes Neurales de la Computación , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Progresión de la Enfermedad
3.
Sensors (Basel) ; 22(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35891145

RESUMEN

In recent years, deep convolutional neural network (CNN)-based image enhancement has shown outstanding performance. However, due to the problems of uneven illumination and low contrast existing in endoscopic images, the implementation of medical endoscopic image enhancement using CNN is still an exploratory and challenging task. An endoscopic image enhancement network (EIEN) based on the Retinex theory is proposed in this paper to solve these problems. The structure consists of three parts: decomposition network, illumination correction network, and reflection component enhancement algorithm. First, the decomposition network model of pre-trained Retinex-Net is retrained on the endoscopic image dataset, and then the images are decomposed into illumination and reflection components by this decomposition network. Second, the illumination components are corrected by the proposed self-attention guided multi-scale pyramid structure. The pyramid structure is used to capture the multi-scale information of the image. The self-attention mechanism is based on the imaging nature of the endoscopic image, and the inverse image of the illumination component is fused with the features of the green and blue channels of the image to be enhanced to generate a weight map that reassigns weights to the spatial dimension of the feature map, to avoid the loss of details in the process of multi-scale feature fusion and image reconstruction by the network. The reflection component enhancement is achieved by sub-channel stretching and weighted fusion, which is used to enhance the vascular information and image contrast. Finally, the enhanced illumination and reflection components are multiplied to obtain the reconstructed image. We compare the results of the proposed method with six other methods on a test set. The experimental results show that EIEN enhances the brightness and contrast of endoscopic images and highlights vascular and tissue information. At the same time, the method in this paper obtained the best results in terms of visual perception and objective evaluation.


Asunto(s)
Aumento de la Imagen , Redes Neurales de la Computación , Algoritmos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos
4.
Diagnostics (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36900040

RESUMEN

Automatic segmentation of polyps during colonoscopy can help doctors accurately find the polyp area and remove abnormal tissues in time to reduce the possibility of polyps transforming into cancer. However, the current polyp segmentation research still has the following problems: blurry polyp boundaries, multi-scale adaptability of polyps, and close resemblances between polyps and nearby normal tissues. To tackle these issues, this paper proposes a dual boundary-guided attention exploration network (DBE-Net) for polyp segmentation. Firstly, we propose a dual boundary-guided attention exploration module to solve the boundary-blurring problem. This module uses a coarse-to-fine strategy to progressively approximate the real polyp boundary. Secondly, a multi-scale context aggregation enhancement module is introduced to accommodate the multi-scale variation of polyps. Finally, we propose a low-level detail enhancement module, which can extract more low-level details and promote the performance of the overall network. Extensive experiments on five polyp segmentation benchmark datasets show that our method achieves superior performance and stronger generalization ability than state-of-the-art methods. Especially for CVC-ColonDB and ETIS, two challenging datasets among the five datasets, our method achieves excellent results of 82.4% and 80.6% in terms of mDice (mean dice similarity coefficient) and improves by 5.1% and 5.9% compared to the state-of-the-art methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA