Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 85: 117289, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094433

RESUMEN

Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.


Asunto(s)
Clioquinol , Ensayos Analíticos de Alto Rendimiento , Humanos , Metaloproteinasa 14 de la Matriz , Inhibidores de la Metaloproteinasa de la Matriz/química , Metaloproteinasas de la Matriz/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768503

RESUMEN

A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.


Asunto(s)
Metaloproteinasa 14 de la Matriz , Metaloendopeptidasas , Colagenasas , Metaloproteinasas de la Matriz , Metaloproteinasas de la Matriz Asociadas a la Membrana , Metaloendopeptidasas/metabolismo , Proteínas , Especificidad por Sustrato
3.
Angiogenesis ; 23(3): 459-477, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32372335

RESUMEN

Blood vessels and nerve tissues are critical to the development and functionality of many vital organs. However, little is currently known about their interdependency during development and after injury. In this study, dual fluorescence transgenic reporter mice were utilized to observe blood vessels and nervous tissues in organs postnatally. Thy1-YFP and Flt1-DsRed (TYFD) mice were interbred to achieve dual fluorescence in the offspring, with Thy1-YFP yellow fluorescence expressed primarily in nerves, and Flt1-DsRed fluorescence expressed selectively in blood vessels. Using this dual fluorescent mouse strain, we were able to visualize the networks of nervous and vascular tissue simultaneously in various organ systems both in the physiological state and after injury. Using ex vivo high-resolution imaging in this dual fluorescent strain, we characterized the organizational patterns of both nervous and vascular systems in a diverse set of organs and tissues. In the cornea, we also observed the dynamic patterns of nerve and blood vessel networks following epithelial debridement injury. These findings highlight the versatility of this dual fluorescent strain for characterizing the relationship between nerve and blood vessel growth and organization.


Asunto(s)
Vasos Sanguíneos , Córnea , Isoanticuerpos , Proteínas Luminiscentes , Imagen Óptica , Nervios Periféricos , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Animales , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/crecimiento & desarrollo , Córnea/irrigación sanguínea , Córnea/diagnóstico por imagen , Córnea/inervación , Femenino , Isoanticuerpos/biosíntesis , Isoanticuerpos/genética , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Nervios Periféricos/diagnóstico por imagen , Nervios Periféricos/crecimiento & desarrollo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
4.
Med Res Rev ; 38(6): 1769-1798, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29528507

RESUMEN

In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Linfangiogénesis/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Ensayos Clínicos como Asunto , Aprobación de Drogas , Humanos , Transducción de Señal
5.
Angiogenesis ; 21(4): 677-698, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29971641

RESUMEN

The study of lymphangiogenesis is an emerging science that has revealed the lymphatic system as a central player in many pathological conditions including cancer metastasis, lymphedema, and organ graft rejection. A thorough understanding of the mechanisms of lymphatic growth will play a key role in the development of therapeutic strategies against these conditions. Despite the known potential of this field, the study of lymphatics has historically lagged behind that of hemangiogenesis. Until recently, significant strides in lymphatic studies were impeded by a lack of lymphatic-specific markers and suitable experimental models compared to those of the more immediately visible blood vasculature. Lymphangiogenesis has also been shown to be a key phenomenon in developmental biological processes, such as cell proliferation, guided migration, differentiation, and cell-to-cell communication, making lymphatic-specific visualization techniques highly desirable and desperately needed. Imaging modalities including immunohistochemistry and in situ hybridization are limited by the need to sacrifice animal models for tissue harvesting at every experimental time point. Moreover, the processes of mounting and staining harvested tissues may introduce artifacts that can confound results. These traditional methods for investigating lymphatic and blood vasculature are associated with several problems including animal variability (e.g., between mice) when replicating lymphatic growth environments and the cost concerns of prolonged, labor-intensive studies, all of which complicate the study of dynamic lymphatic processes. With the discovery of lymphatic-specific markers, researchers have been able to develop several lymphatic and blood vessel-specific, promoter-driven, fluorescent-reporter transgenic mice for visualization of lymphatics in vivo and in vitro. For instance, GFP, mOrange, tdTomato, and other fluorescent proteins can be expressed under control of a lymphatic-specific marker like Prospero-related homeobox 1 (Prox1), which is a highly conserved transcription factor for determining embryonic organogenesis in vertebrates that is implicated in lymphangiogenesis as well as several human cancers. Importantly, Prox1-null mouse embryos develop without lymphatic vessels. In human adults, Prox1 maintains lymphatic endothelial cells and upregulates proteins associated with lymphangiogenesis (e.g., VEGFR-3) and downregulates angiogenesis-associated gene expression (e.g., STAT6). To visualize lymphatic development in the context of angiogenesis, dual fluorescent-transgenic reporters, like Prox1-GFP/Flt1-DsRed mice, have been bred to characterize lymphatic and blood vessels simultaneously in vivo. In this review, we discuss the trends in lymphatic visualization and the potential usage of transgenic breeds in hemangiogenesis and lymphangiogenesis research to understand spatial and temporal correlations between vascular development and pathological progression.


Asunto(s)
Genes Reporteros , Proteínas Luminiscentes/biosíntesis , Linfangiogénesis , Neovascularización Patológica , Neovascularización Fisiológica , Imagen Óptica/métodos , Animales , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Neovascularización Patológica/diagnóstico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología
6.
Cells ; 13(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474422

RESUMEN

Chlorine (Cl2) exposure poses a significant risk to ocular health, with the cornea being particularly susceptible to its corrosive effects. Antioxidants, known for their ability to neutralize reactive oxygen species (ROS) and alleviate oxidative stress, were explored as potential therapeutic agents to counteract chlorine-induced damage. In vitro experiments using human corneal epithelial cells showed decreased cell viability by chlorine-induced ROS production, which was reversed by antioxidant incubation. The mitochondrial membrane potential decreased due to both low and high doses of Cl2 exposure; however, it was recovered through antioxidants. The wound scratch assay showed that antioxidants mitigated impaired wound healing after Cl2 exposure. In vivo and ex vivo, after Cl2 exposure, increased corneal fluorescein staining indicates damaged corneal epithelial and stromal layers of mice cornea. Likewise, Cl2 exposure in human ex vivo corneas led to corneal injury characterized by epithelial fluorescein staining and epithelial erosion. However, antioxidants protected Cl2-induced damage. These results highlight the effects of Cl2 on corneal cells using in vitro, ex vivo, and in vivo models while also underscoring the potential of antioxidants, such as vitamin A, vitamin C, resveratrol, and melatonin, as protective agents against acute chlorine toxicity-induced corneal injury. Further investigation is needed to confirm the antioxidants' capacity to alleviate oxidative stress and enhance the corneal healing process.


Asunto(s)
Antioxidantes , Lesiones de la Cornea , Humanos , Animales , Ratones , Antioxidantes/metabolismo , Cloro/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Córnea/metabolismo , Fluoresceína/farmacología
7.
Phytochemistry ; 216: 113884, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813133

RESUMEN

Six undescribed compounds, uvarirufols D and E, (+)-uvarigranol B, (-)-uvarigranol E, 6-acetoxy-5-hydroxy-7-methoxyflavanone and cherrevenaphthalene D, along with twelve known compounds, including polyoxygenated cyclohexenes, flavonoids, and lignans, were isolated from the methanol extract of Uvaria rufa stems. Their structures were elucidated by spectroscopic analyses and the absolute configurations were determined using electronic circular dichroism. Several isolates were evaluated for cytotoxic, antitubercular and anti-inflammatory potentials. (-)-6-Acetylzeylenol showed moderate inhibitory activity against Mycobacterium tuberculosis, with MIC value of 47.10 µg/mL. Cherrevenaphthalene D exhibited weak antimycobacterial activity and potent inhibitory effect on lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells (EC50 = 8.54 µM). 8-Hydroxy-5,7-dimethoxyflavanone displayed moderate level of NO inhibition (EC50 = 43.62 µM) with little cytotoxicity. The polyoxygenated cyclohexenes and lignans were inactive against HCT 116 and 22Rv1 cancer cells (IC50 > 100 µM).


Asunto(s)
Lignanos , Uvaria , Uvaria/química , Estructura Molecular , Ciclohexenos/farmacología , Ciclohexenos/química , Lignanos/farmacología
8.
Phytochemistry ; 201: 113276, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35714737

RESUMEN

From the stem bark of Entandrophragma angolense, six undescribed compounds were isolated, including seco-tirucallane type triterpenoids, limonoids, and a catechin glucoside, along with nineteen known structures. All structures were determined by interpretation of spectroscopic and HRMS data, and absolute configuration was confirmed with the aid of electronic circular dichroism. The isolated compounds were tested for LPS-induced NO inhibition in RAW 264.7 macrophages and EC50 values for moluccensin O and (-)-catechin were 81 µM and 137 µM, respectively.


Asunto(s)
Catequina , Limoninas , Meliaceae , Antiinflamatorios/farmacología , Limoninas/química , Limoninas/farmacología , Meliaceae/química , Estructura Molecular
9.
Science ; 373(6557): 931-936, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285133

RESUMEN

There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Coronavirus Humano OC43/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Tiazoles/farmacología , Células A549 , Animales , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Benzamidas , COVID-19/virología , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Coronavirus Humano OC43/fisiología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Transgénicos , Pruebas de Sensibilidad Microbiana , Piperidinas , Piridinas , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/uso terapéutico , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
10.
Am J Pathol ; 174(4): 1564-71, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19264910

RESUMEN

Corneal neovascularization is one of the leading causes of blindness. The aim of this study was to evaluate the pro-angiogenic role of corneal fibroblast-derived membrane type-1 matrix metalloproteinase (MT1-MMP) on basic fibroblast growth factor (bFGF)-induced corneal neovascularization in vivo and in vitro. Immunohistochemical studies demonstrated that MT1-MMP was expressed in keratocytes and immortalized corneal fibroblast cell lines. Vascular endothelial growth factor protein levels were increased after bFGF-stimulation of wild-type fibroblast cells compared with MT1-MMP knockout fibroblast cells. Corneal vascularization was significantly increased after a combination of bFGF pellet implantation and naked MT1-MMP DNA injection in wild-type mouse corneas compared with either bFGF pellet implantation or naked MT1-MMP DNA-injected corneas. Western blotting analysis of the phosphorylation levels of the key signaling molecules (p38, JNK, and ERK) demonstrated that phosphorylation levels of both p38 and JNK were diminished after bFGF stimulation of MT1-MMP knockout cells compared with wild-type and MT1-MMP knockin cells. These results suggest that MT1-MMP potentiates bFGF-induced corneal neovascularization, likely by modulating the bFGF signal transduction pathway.


Asunto(s)
Neovascularización de la Córnea/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Neovascularización de la Córnea/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Inmunohistoquímica , MAP Quinasa Quinasa 4/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Protein Pept Lett ; 27(10): 979-988, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32268857

RESUMEN

BACKGROUND: Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. OBJECTIVE: The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. METHODS: Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. RESULTS: Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. CONCLUSION: Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.


Asunto(s)
Córnea/metabolismo , Exosomas/metabolismo , Fibroblastos/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteómica , Animales , Ratones , Dominios Proteicos
12.
Protein Pept Lett ; 27(1): 30-40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31553284

RESUMEN

BACKGROUND: Lymphatic vessel formation (lymphangiogenesis) plays important roles in cancer metastasis, organ rejection, and lymphedema, but the underlying molecular events remain unclear. Furthermore, despite significant overlap in the molecular families involved in angiogenesis and lymphangiogenesis, little is known about the crosstalk between these processes. The ex vivo aortic ring assay and lymphatic ring assay have enabled detailed studies of vessel sprouting, but harvesting and imaging clear thoracic duct samples remain challenging. Here we present a modified ex vivo dual aortic ring and thoracic duct assay using tissues from dual fluorescence reporter Prox1- GFP/Flt1-DsRed (PGFD) mice, which permit simultaneous visualization of blood and lymphatic endothelial cells. OBJECTIVE: To characterize the concurrent sprouting of intrinsically fluorescent blood and lymphatic vessels from harvested aorta and thoracic duct samples. METHODS: Dual aorta and thoracic duct specimens were harvested from PGFD mice, grown in six types of endothelial cell growth media (one control, five that each lack a specific growth factor), and visualized by confocal fluorescence microscopy. Linear mixed models were used to compare the extent of vessel growth and sprouting over a 28-day period. RESULTS: Angiogenesis occurred prior to lymphangiogenesis in our assay. The control medium generally induced superior growth of both vessel types compared with the different modified media formulations. The greatest decrease in lymphangiogenesis was observed in vascular endothelial growth factor-C (VEGF-C)-devoid medium, suggesting the importance of VEGF-C in lymphangiogenesis. CONCLUSION: The modified ex vivo dual aortic ring and thoracic duct assay represents a powerful tool for studying angiogenesis and lymphangiogenesis in concert.


Asunto(s)
Linfangiogénesis/fisiología , Vasos Linfáticos/metabolismo , Conducto Torácico/metabolismo , Animales , Aorta/metabolismo , Técnicas Biosensibles/métodos , Células Endoteliales/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Imagenología Tridimensional , Masculino , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/fisiología , Imagen Óptica , Especificidad de Órganos , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1864(7): 129595, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32173376

RESUMEN

Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.


Asunto(s)
Encéfalo/fisiología , Sistema Nervioso , Neurogénesis/genética , Neuronas/fisiología , Animales , Humanos , Ratones , Ratones Transgénicos/genética , Fenómenos Fisiológicos del Sistema Nervioso/genética
14.
Biochem Biophys Res Commun ; 382(1): 124-8, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19265684

RESUMEN

CCL23 is a CC chemokine and exerts its biological activities on endothelial cells as well as on immune cells through CCR1. We investigated the potential effect of CCL23 on expression of KDR/Flk-1 receptor in endothelial cells. PCR, confocal microscope and Western blot analysis revealed that CCL23 up-regulated KDR/Flk-1 mRNA and protein levels in endothelial cells. A reporter assay indicated that CCL23-induced KDR/Flk-1 expression primarily occurred at the transcriptional level. In addition, CCL23 stimulated phosphorylation of SAPK/JNK, and an inhibitor of SAPK/JNK blocks the CCL23-induced KDR/Flk-1 expression. Furthermore, VEGF-induced ERK phosphorylation was stimulated by CCL23. Finally, CCL23 promoted VEGF-induced endothelial proliferation and migration, which were correlated with the maximal stimulation of KDR/Flk-1 expression by CCL23. Taken together, these findings suggest that CCL23 results in up-regulation of KDR/flk-1 receptor gene transcription and protein expression and that KDR/Flk-1 up-regulation induced by CCL23 may contribute to potentiation of VEGF action in angiogenesis.


Asunto(s)
Movimiento Celular/genética , Quimiocinas CC/metabolismo , Células Endoteliales/fisiología , Regulación de la Expresión Génica , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Proliferación Celular , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Humanos , MAP Quinasa Quinasa 4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica/genética , ARN Mensajero/biosíntesis , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/farmacología
15.
J Vasc Res ; 46(6): 541-50, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19571574

RESUMEN

BACKGROUND/AIMS: Decorin has been shown to have antiangiogenic properties. In this study, we evaluate the involvement of membrane type 1-matrix metalloproteinase (MT1-MMP), a proangiogenic enzyme, in decorin cleavage in the cornea. METHODS: MT1-MMP expression was confirmed immunohistochemically in keratocytes and immortalized corneal fibroblast cell lines. Corneal micropockets of bFGF were used to assess the expression of decorin and MT1-MMP. Western blotting was used to evaluate decorin degradation by MT1-MMP. Aortic ring tube formation assays were used to assay the inhibitory effect of decorin and stimulatory effect of MT1-MMP on vascular endothelial cells in vitro. RESULTS: We show that MT1-MMP expression is upregulated following bFGF pellet implantation in the cornea in vivo, and that MT1-MMP cleaves decorin in a time- and concentration-dependent manner in vitro. Furthermore, the addition of MT1-MMP reduces the inhibitory effects of decorin on aortic ring tube formation in vitro. Cleavage of decorin by MT1-MMP-deficient corneal cell lysates is diminished relative to that by wild-type corneal cell lysates, and an MT1-MMP knockin restores decorin processing in vitro. CONCLUSION: The proangiogenic role of MT1-MMP in the cornea may be mediated, in part, by facilitated cleavage of corneal decorin.


Asunto(s)
Córnea/enzimología , Neovascularización de la Córnea/enzimología , Proteínas de la Matriz Extracelular/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteoglicanos/metabolismo , Animales , Aorta/enzimología , Línea Celular , Neovascularización de la Córnea/inducido químicamente , Medios de Cultivo Condicionados/metabolismo , Decorina , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Factor 2 de Crecimiento de Fibroblastos , Cinética , Metaloproteinasa 14 de la Matriz/deficiencia , Metaloproteinasa 14 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidores de Proteasas/farmacología , Proteínas Recombinantes/metabolismo , Técnicas de Cultivo de Tejidos , Transfección
16.
Invest Ophthalmol Vis Sci ; 60(6): 2321-2329, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31117124

RESUMEN

Purpose: Investigate the impact matrix metalloproteinase 14 (MMP14) delivered via exosomes produced by corneal fibroblasts on vascular endothelial growth factor receptor 1 (VEGFR1) cleavage on endothelial cells, and other key processes of angiogenesis. Methods: Proteolysis of VEGFR1 and R2 by the catalytic domain of MMP14 was investigated via immunocytochemistry with anti-VEGFR1, anti-VEGFR2, and anti-MMP14 antibodies. Exosomes were isolated via precipitation and serial ultracentrifugation from wild-type (WT) and MMP14 exon4-deficient corneal fibroblasts. Transmission electron microscopy and nanotracking analysis were used to characterize the isolated exosomes. The presence of MMP14 in exosomes from WT fibroblasts was confirmed by Western blotting. VEGFR1 cleavage upon treatment with WT-derived exosomes, Δexon4-derived exosomes, or the pan-MMP inhibitor GM60001 was examined via in vitro proteolysis analysis using recombinant mouse (rm) VEGFR1/R2. Endothelial cell migration and proliferation were investigated using a Boyden chamber assay and BrdU incorporation, respectively. Results: WT-derived exosomes specifically cleaved rmVEGFR1 in vitro, whereas Δexon4-derived exosomes did not. Treatment with the pan-MMP inhibitor GM6001 effectively inhibited VEGFR1 cleavage by WT-derived exosomes, confirming the role of MMP14 in this cleavage. WT-derived exosomes induced greater endothelial cell migration (P < 0.01) and proliferation (P < 0.5) compared to Δexon4-derived exosomes. Conclusions: MMP14-containing exosomes may be involved in the regulation of corneal neovascularization through degradation of VEGFR1 and VEGFA-induced endothelial cell proliferation and migration.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Exosomas/fisiología , Metaloproteinasa 14 de la Matriz/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Córnea/citología , Humanos , Inmunohistoquímica
17.
Sci Rep ; 9(1): 12331, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444394

RESUMEN

The role of the corneal epithelium and limbus in corneal avascularity and pathological neovascularization (NV) is not well understood. To investigate the contributions of the corneal and limbal epithelia in angiogenic and lymphangiogenic privilege, we designed five injury models involving debridement of different portions of the cornea and limbus and applied them to the dual-fluorescence reporter Prox1-GFP/Flt1-DsRed mouse, which permits in vivo imaging of blood and lymphatic vessels via fluorescence microscopy. Debridement of the whole cornea resulted in significant hemangiogenesis (HA) and lymphangiogenesis (LA), while that of the whole limbus yielded minimal corneal HA or LA. Following hemilimbal plus whole corneal debridement, corneal NV occurred only through the non-injured aspect of the limbus. Overall, these results suggest that the integrity of the corneal epithelium is important for (lymph)angiogenic privilege, whereas the limbus does not act as a physical or physiologic barrier to invading vessels. In CDh5-CreERT2VEGFR2lox/PGFD mice, conditional deletion of vascular endothelial growth factor receptor 2 in vascular endothelial cells abolished injury-induced HA and LA, demonstrating the utility of this transgenic mouse line for identifying important factors in the process of neovascularization.


Asunto(s)
Lesiones de la Cornea/patología , Colorantes Fluorescentes/metabolismo , Limbo de la Córnea/irrigación sanguínea , Limbo de la Córnea/patología , Linfangiogénesis , Neovascularización Fisiológica , Animales , Desbridamiento , Modelos Animales de Enfermedad , Epitelio Corneal/patología , Ratones Transgénicos
18.
Biochem J ; 406(1): 49-55, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17492939

RESUMEN

PolyP (inorganic polyphosphate) is a linear polymer of many tens or hundreds of orthophosphate residues found in a wide range of organisms, including bacteria, fungi, insects, plants and vertebrates. Despite its wide distribution in mammalian tissues and plasma, the biological functions of polyP on tumour metastasis and angiogenesis have not been previously examined. In the present study, we have shown that polyP effectively blocked in vivo pulmonary metastasis of B16BL6 cells by suppression of neovascularization, whereas it did not affect proliferation or adhesion to extracellular matrix proteins. PolyP not only inhibited bFGF (basic fibroblast growth factor)-induced proliferation and ERK (extracellular-signal-regulated kinase)/p38 MAPK (mitogen-activated protein kinase) activation of human endothelial cells, but also blocked the binding of bFGF to its cognate cell-surface receptor. Furthermore, polyP inhibited bFGF-induced in vitro and in vivo angiogenesis, suggesting that polyP possesses an anti-angiogenic activity. Since neovascularization is essential for tumour metastasis, our present findings clearly indicate that polyP has an in vivo anti-metastatic activity via its anti-angiogenic activity. Taken together with the fact that angiogenesis occurs under various normal and pathological conditions, our observations suggest that endogenous polyP may play a critical role during embryonic development, wound healing and inflammation, as well as in the progress of pathological diseases such as rheumatoid arthritis and cancer.


Asunto(s)
Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/secundario , Melanoma/patología , Metástasis de la Neoplasia/patología , Neovascularización Patológica/patología , Polifosfatos/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Superficie Celular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Surv Ophthalmol ; 63(4): 453-479, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29287709

RESUMEN

Corneal transplantation has been proven effective for returning the gift of sight to those affected by corneal disorders such as opacity, injury, and infections that are a leading cause of blindness. Immune privilege plays an important role in the success of corneal transplantation procedures; however, immune rejection reactions do occur, and they, in conjunction with a shortage of corneal donor tissue, continue to pose major challenges. Corneal immune privilege is important to the success of corneal transplantation and closely related to the avascular nature of the cornea. Corneal avascularity may be disrupted by the processes of angiogenesis and lymphangiogenesis, and for this reason, these phenomena have been a focus of research in recent years. Through this research, therapies addressing certain rejection reactions related to angiogenesis have been developed and implemented. Corneal donor tissue shortages also have been addressed by the development of new materials to replace the human donor cornea. These advancements, along with other improvements in the corneal transplantation procedure, have contributed to an improved success rate for corneal transplantation. We summarize recent developments and improvements in corneal transplantation, including the current understanding of angiogenesis mechanisms, the anti-angiogenic and anti-lymphangiogenic factors identified to date, and the new materials being used. Additionally, we discuss future directions for research in corneal transplantation.


Asunto(s)
Enfermedades de la Córnea/cirugía , Trasplante de Córnea/métodos , Rechazo de Injerto/prevención & control , Linfangiogénesis , Neovascularización Patológica/prevención & control , Corticoesteroides/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Trasplante de Córnea/efectos adversos , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Humanos , Inmunosupresores/uso terapéutico
20.
Sci Rep ; 7: 40548, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165027

RESUMEN

Specific factors from the corneal epithelium underlying the stimulation of stromal fibrosis and myofibroblast formation in corneal wound healing have not been fully elucidated. Given that exosomes are known to transfer bioactive molecules among cells and play crucial roles in wound healing, angiogenesis, and cancer, we hypothesized that corneal epithelial cell-derived exosomes may gain access to the underlying stromal fibroblasts upon disruption of the epithelial basement membrane and that they induce signaling events essential for corneal wound healing. In the present study, exosome-like vesicles were observed between corneal epithelial cells and the stroma during wound healing after corneal epithelial debridement. These vesicles were also found in the stroma following anterior stromal keratectomy, in which surgical removal of the epithelium, basement membrane, and anterior stroma was performed. Exosomes secreted by mouse corneal epithelial cells were found to fuse to keratocytes in vitro and to induce myofibroblast transformation. In addition, epithelial cell-derived exosomes induced endothelial cell proliferation and ex vivo aortic ring sprouting. Our results indicate that epithelial cell-derived exosomes mediate communication between corneal epithelial cells and corneal keratocytes as well as vascular endothelial cells. These findings demonstrate that epithelial-derived exosomes may be involved in corneal wound healing and neovascularization, and thus, may serve as targets for potential therapeutic interventions.


Asunto(s)
Células Epiteliales/metabolismo , Epitelio Corneal/irrigación sanguínea , Epitelio Corneal/patología , Exosomas/metabolismo , Neovascularización Fisiológica , Cicatrización de Heridas , Animales , Membrana Basal/metabolismo , Membrana Basal/patología , Membrana Basal/ultraestructura , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Células Epiteliales/ultraestructura , Epitelio Corneal/metabolismo , Exosomas/ultraestructura , Humanos , Fusión de Membrana , Ratones Endogámicos C57BL , Miofibroblastos/citología , Miofibroblastos/metabolismo , Conejos , Ratas , Tetraspanina 30/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA