Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 15(1): 63, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28756777

RESUMEN

BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.


Asunto(s)
Genoma de los Insectos , Herbivoria , Mariposas Nocturnas/genética , Animales , Perfilación de la Expresión Génica , Genómica , Especies Introducidas , Larva/genética , Larva/crecimiento & desarrollo , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/crecimiento & desarrollo , Análisis de Secuencia de ADN
2.
Genet Mol Res ; 15(4)2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27820649

RESUMEN

A gene encoding 1-aminocyclopropane-1-carboxylic oxidase (ACO), which catalyzes the terminal step in ethylene biosynthesis, was isolated from Agrostis stolonifera. The AsACO gene is composed of 975 bp, encoding 324 amino acids. Three exons interspersed by two introns form AsACO gDNA. A BLAST search of the nucleotide sequence revealed a high level of similarity (79-91%) between AsACO and ACO genes of other plants. A phylogenetic tree was constructed via BLAST in the NCBI, and revealed the highest homology with wheat TaACO. The calculated molecular mass and predicted isoelectric point of AsACO were 36.25 and 4.89 kDa, respectively. Analysis of subcellular localization revealed that AsACO is located in the nucleus and cytoplasm. The Fe(II)-binding cofactors and cosubstrate were identified, pertaining to the ACO family. The expression patterns of AsACO were determined by quantitative real time PCR. AsACO expression was highest in the stem, and was strongly up-regulated in response to ethephon, methyl jasmonate, salicylic acid, and cold temperature, but down-regulated in response to drought and NaCl treatment. The protein encoded by AsACO exhibited ACC oxidase activity in vitro. Taken together, these findings suggest that AsACO contains domains common to the ACO family, and is induced in response to exogenous hormones. Conversely, some abiotic stress conditions can inhibit AsACO expression.


Asunto(s)
Agrostis/enzimología , Agrostis/genética , Aminoácido Oxidorreductasas/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Clonación Molecular , Biología Computacional , ADN Complementario/genética , Vectores Genéticos/metabolismo , Peso Molecular , Filogenia , Hojas de la Planta/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Fracciones Subcelulares/enzimología , Transcripción Genética
3.
Genet Mol Res ; 15(2)2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27323080

RESUMEN

Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.


Asunto(s)
Arabidopsis/genética , Medicago sativa/genética , Peroxidasa/genética , Plantas Modificadas Genéticamente/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Flores/enzimología , Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Medicago sativa/enzimología , Medicago sativa/crecimiento & desarrollo , Estrés Oxidativo/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Tolerancia a la Sal/genética , Cloruro de Sodio/toxicidad , Estrés Fisiológico/genética
4.
Genet Mol Res ; 15(2)2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27173268

RESUMEN

The stay-green gene (SGR) is a key regulatory factor for chlorophyll degradation and senescence. However, to date, little is known about SGR in Zoysia japonica. In this study, ZjSGR was cloned, using rapid amplification of cDNA ends-polymerase chain reaction (PCR). The target sequence is 831 bp in length, corresponding to 276 amino acids. Protein BLAST results showed that ZjSGR belongs to the stay-green superfamily. A phylogenetic analysis implied that ZjSGR is most closely related to ZmSGR1. The subcellular localization of ZjSGR was investigated, using an Agrobacterium-mediated transient expression assay in Nicotiana benthamiana. Our results demonstrated that ZjSGR protein is localized in the chloroplasts. Quantitative real time PCR was carried out to investigate the expression characteristics of ZjSGR. The expression level of ZjSGR was found to be highest in leaves, and could be strongly induced by natural senescence, darkness, abscisic acid (ABA), and methyl jasmonate treatment. Moreover, an in vivo function analysis indicated that transient overexpression of ZjSGR could accelerate chlorophyll degradation, up-regulate the expression of SAG113, and activate ABA biosynthesis. Taken together, these results provide evidence that ZjSGR could play an important regulatory role in leaf chlorophyll degradation and senescence in plants at the molecular level.


Asunto(s)
Clorofila/metabolismo , Proteínas de Plantas/genética , Poaceae/genética , Ácido Abscísico/metabolismo , Cloroplastos/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Transporte de Proteínas , Estrés Fisiológico
6.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA