RESUMEN
Grain boundary (GB) glassy phase often results in poor ceramic performances. Here, a Multicomponent Grain Boundary Entropy (MGBE) descriptor extracted from high-throughput first-principle calculations is proposed to capture the nature of high-entropy GB phases in ceramics. In a Si3N4 ceramic model system, MGBE is found to have a direct correlation with GB phase crystallinity, element segregation, and formation of pores. The predicted highest MGBE sintering additive combination (MgO-Y2O3-Er2O3-Yb2O3) leads to high-performance ceramics of homogenous microstructure and pure GB (YErYb)2Si3O3N4 phase without observable glassy film. Conversely, low MGBE additives result in a substantial amount of GB glassy phase, element segregation, and pore clusters. The MGBE descriptor can make a rapid screening of multicomponent sintering additives, offering a novel approach for rational designing of ceramics with targeted microstructure and performances.
RESUMEN
Microelectrode arrays (MEAs) are pivotal brain-machine interface devices that facilitate in situ and real-time detection of neurophysiological signals and neurotransmitter data within the brain. These capabilities are essential for understanding neural system functions, treating brain disorders, and developing advanced brain-machine interfaces. To enhance the performance of MEAs, this study developed a crosslinked hydrogel coating of calcium alginate (CA) and chitosan (CS) loaded with the anti-inflammatory drug dexamethasone sodium phosphate (DSP). By modifying the MEAs with this hydrogel and various conductive nanomaterials, including platinum nanoparticles (PtNPs) and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS), the electrical properties and biocompatibility of the electrodes were optimized. The hydrogel coating matches the mechanical properties of brain tissue more effectively and, by actively releasing anti-inflammatory drugs, significantly reduces post-implantation tissue inflammation, extends the electrodes' lifespan, and enhances the quality of neural activity detection. Additionally, this modification ensures high sensitivity and specificity in the detection of dopamine (DA), displaying high-quality dual-mode neural activity during in vivo testing and revealing significant functional differences between neuron types under various physiological states (anesthetized and awake). Overall, this study showcases the significant application value of bioactive hydrogels as excellent nanobiointerfaces and drug delivery carriers for long-term neural monitoring. This approach has the potential to enhance the functionality and acceptance of brain-machine interface devices in medical practice and has profound implications for future neuroscience research and the development of strategies for treating neurological diseases.
RESUMEN
Reactive oxygen species (ROS) generated from photosensitizers exhibit great potential for repolarizing immunosuppressive tumor-associated macrophages (TAMs) toward the anti-tumor M1 phenotype, representing a promising cancer immunotherapy strategy. Nevertheless, their effectiveness in eliminating solid tumors is generally limited by the instability and inadequate TAMs-specific targeting of photosensitizers. Here, a novel core-shell integrated nano platform is proposed to achieve a coordinated strategy of repolarizing TAMs for potentiating cancer immunotherapy. Colloidal mesoporous silica nanoparticles (CMSN) are fabricated to encapsulate photosensitizer-Indocyanine Green (ICG) to improve their stability. Then ginseng-derived exosome (GsE) was coated on the surface of ICG/CMSN for targeting TAMs, as well as repolarizing TAMs concurrently, named ICG/CMSN@GsE. As expected, with the synergism of ICG and GsE, ICG/CMSN@GsE exhibited better stability, mild generation of ROS, favorable specificity toward M2-like macrophages, enhancing drug retention in tumors and superior TAMs repolarization potency, then exerted a potent antitumor effect. In vivo, experiment results also confirm the synergistic suppression of tumor growth accompanied by the increased presence of anti-tumor M1-like macrophages and maximal tumor damage. Taken together, by integrating the superiorities of TAMs targeting specificity and synergistic TAMs repolarization effect into a single nanoplatform, ICG/CMSN@GsE can readily serve as a safe and high-performance nanoplatform for enhanced cancer immunotherapy.
RESUMEN
The globus pallidus internus (GPi) was considered a common target for stimulation in Parkinson's disease (PD). Located deep in the brain and of small size, pinpointing it during surgery is challenging. Multi-channel microelectrode arrays (MEAs) can provide micrometer-level precision functional localization, which can maximize the surgical outcome. In this paper, a 64-channel MEA modified by platinum nanoparticles with a detection site impedance of 61.1 kΩ was designed and prepared, and multiple channels could be synchronized to cover the target brain region and its neighboring regions so that the GPi could be identified quickly and accurately. The results of the implant trajectory indicate that, compared to the control side, there is a reduction in local field potential (LFP) power in multiple subregions of the upper central thalamus on the PD-induced side, while the remaining brain regions exhibit an increasing trend. When the MEA tip was positioned at 8,700 µm deep in the brain, the various characterizations of the spike signals, combined with the electrophysiological characteristics of the ß-segmental oscillations in PD, enabled MEAs to localize the GPi at the single-cell level. More precise localization could be achieved by utilizing the distinct characteristics of the internal capsule (ic), the thalamic reticular nucleus (Rt), and the peduncular part of the lateral hypothalamus (PLH) brain regions, as well as the relative positions of these brain structures. The MEAs designed in this study provide a new detection method and tool for functional localization of PD targets and PD pathogenesis at the cellular level.
RESUMEN
In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.
Asunto(s)
Estimulación Encefálica Profunda , Microelectrodos , Ratas Sprague-Dawley , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Animales , Ratas , Masculino , Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/rehabilitación , Potenciales de Acción/fisiología , Algoritmos , Sistemas de Computación , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/rehabilitación , Aprendizaje AutomáticoRESUMEN
Navigating toward destinations with rewards is a common behavior among animals. The ventral tegmental area (VTA) has been shown to be responsible for reward coding and reward cue learning, and its response to other variables, such as kinematics, has also been increasingly studied. These findings suggest a potential relationship between animal navigation behavior and VTA activity. However, the deep location and small volume of the VTA pose significant challenges to the precision of electrode implantation, increasing the uncertainty of measurement results during animal navigation and thus limiting research on the role of the VTA in goal-directed navigation. To address this gap, we innovatively designed and fabricated low-curvature microelectrode arrays (MEAs) via a novel backside dry etching technique to release residual stress. Histological verification confirmed that low-curvature MEAs indeed improved electrode implantation precision. These low-curvature MEAs were subsequently implanted into the VTA of the rats to observe their electrophysiological activity in a freely chosen modified T-maze. The results of the behavioral experiments revealed that the rats could quickly learn the reward probability corresponding to the left and right paths and that VTA neurons were deeply involved in goal-directed navigation. Compared with those in no-reward trials, VTA neurons in reward trials presented a significantly greater firing rate and larger local field potential (LFP) amplitude during the reward-consuming period. Notably, we discovered place fields mapped by VTA neurons, which disappeared or were reconstructed with changes in the path-outcome relationship. These results provide new insights into the VTA and its role in goal-directed navigation. Our designed and fabricated low-curvature microelectrode arrays can serve as a new device for precise deep brain implantation in the future.
RESUMEN
Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.
Asunto(s)
Región CA1 Hipocampal , Microelectrodos , Neuronas , Animales , Neuronas/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Ratas , Masculino , Diseño de Equipo/métodosRESUMEN
The striatum plays a crucial role in studying epilepsy, as it is involved in seizure generation and modulation of brain activity. To explore the complex interplay between the striatum and epilepsy, we engineered advanced microelectrode arrays (MEAs) specifically designed for precise monitoring of striatal electrophysiological activities in rats. These observations were made during and following seizure induction, particularly three and 7 days post-initial modeling. The modification of graphene oxide (GO)/poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/platinu-m nanoparticles (PtNPs) demonstrated a marked reduction in impedance (10.5 ± 1.1 kΩ), and maintained exceptional stability, with impedance levels remaining consistently low (23 kΩ) even 14 days post-implantation. As seizure intensity escalated, we observed a corresponding increase in neuronal firing rates and local field potential power, with a notable shift towards higher frequency peaks and augmented inter-channel correlation. Significantly, during the grand mal seizures, theta and alpha bands became the dominant frequencies in the local field potential. Compared to the normal group, the spike firing rates on day 3 and 7 post-modeling were significantly higher, accompanied by a decreased firing interval. Power in both delta and theta bands exhibited an increasing trend, correlating with the duration of epilepsy. These findings offer valuable insights into the dynamic processes of striatal neural activity during the initial and latent phases of temporal lobe epilepsy and contribute to our understanding of the neural mechanisms underpinning epilepsy.
RESUMEN
Controlled- or slow-release urea can improve crop nitrogen use efficiencies and yields in many agricultural production systems. The effect of controlled-release urea on the relationships between levels of gene expression and yields has not been adequately researched. We conducted a 2 year field study with direct-seeded rice, which included treatments of controlled-release urea at four rates (120, 180, 240, and 360 kg N ha-1), a standard urea treatment (360 kg N ha-1), and a control treatment without applied nitrogen. Controlled-release urea improved the inorganic nitrogen concentrations of root-zone soil and water, functional enzyme activities, protein contents, grain yields, and nitrogen use efficiencies. Controlled-release urea also improved the gene expressions of nitrate reductase [NAD(P)H] (EC 1.7.1.2), glutamine synthetase (EC 6.3.1.2), and glutamate synthase (EC 1.4.1.14). With the exception of glutamate synthase activity, there were significant correlations among these indices. The results showed that controlled-release urea improved the content of inorganic nitrogen within the rice root zone. Compared with urea, the average enzyme activity of controlled-release urea increased by 50-200%, and the relative gene expression was increased by 3-4 times on average. The added soil nitrogen increased the level of gene expression, allowing enhanced synthesis of enzymes and proteins for nitrogen absorption and use. Hence, controlled-release urea improved the nitrogen use efficiency and the grain yield of rice. Controlled-release urea is an ideal nitrogen fertilizer showing great potential for improving rice production.
RESUMEN
The functioning of place cells requires the involvement of multiple neurotransmitters, with dopamine playing a critical role in hippocampal place cell activity. However, the exact mechanisms through which dopamine influences place cell activity remain largely unknown. Herein, we present the development of the integrated three-electrode dual-mode detection chip (ITDDC), which enables simultaneous recording of the place cell activity and dopamine concentration fluctuation. The working electrode, reference electrode, and counter electrode are all integrated within the ITDDC in electrochemical detection, enabling the real-time in situ monitoring of dopamine concentrations in animals in motion. The reference, working, and counter electrodes are surface-modified using PtNPs and polypyrrole, PtNPs and PEDOT:PSS, and PtNPs, respectively. This modification allows for the detection of dopamine concentrations as low as 20 nM. We conducted dual-mode testing on mice in a novel environment and an environment with food rewards. We found distinct dopamine concentration variations along different paths within a novel environment, implying that different dopamine levels may contribute to spatial memory. Moreover, environmental food rewards elevate dopamine significantly, followed by the intense firing of reward place cells, suggesting a crucial role of dopamine in facilitating the encoding of reward-associated locations in animals. The real-time and in situ recording capabilities of ITDDC offer new opportunities to investigate the interplay between electrophysiology and dopamine during animal exploration and reward-based memory and provide a novel glimpse into the correlation between dopamine levels and place cell activity.
Asunto(s)
Dopamina , Células de Lugar , Ratones , Animales , Polímeros , Pirroles , Electrodos , RecompensaRESUMEN
The accumulation of nanomedicines in tumor tissues determines their therapeutic efficacy. We herein exploit the tropism of macrophages to improve the accumulation and retention time of nanomedicine at tumors. Interestingly, macrophages are not merely as transporters, but killers activated by nanomedicine. The system(M@C-HA/ICG) was established by decorating macrophages with hyaluronic acid-modified hollow mesoporous carbon (C) nanoparticles loading indocyanine green (ICG). Notably, C nanoparticles with superior photothermal conversion capability not merely guarantee the efficient delivery of ICG through high drug loading efficiency and inhibiting the premature leaky, but effectually activate the polarization of macrophages. The results exhibited that those activated macrophages could release pro-inflammatory cytokines (NO, TNF-α, IL-12), while M@C-HA/ICG afforded about 2-fold higher tumor accumulation compared with pure nanoparticle C-HA/ICG and produced heat and singlet oxygen (1O2) under irradiation of an 808 nm laser, realizing the combination of photodynamic therapy (PDT), photothermal therapy (PTT) and cytokines-mediated immunotherapy. Specially, we also investigated the relationship of singlet oxygen (1O2) or temperature and tumor-killing activity for understanding the specific effectual procedure of PDT/PTT synergistic therapy. Overall, we firstly established an "all active" delivery system integrating the features of nanomedicine with biological functions of macrophages, providing a novel insight for cell-mediated delivery platform and tumor targeted multimodality anti-cancer therapy.
Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Citocinas , Humanos , Verde de Indocianina/uso terapéutico , Macrófagos , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fototerapia/métodos , Oxígeno SingleteRESUMEN
For inflammatory bowel disease (IBD) therapy, systemic exposure of anti-TNF-α antibodies brought by current clinical injection always causes serious adverse effects. Colon-targeted delivery of anti-TNF-α antibodies through the oral route is of great importance but remains a formidable challenge. Here, we reported a biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for this purpose. A large mesoporous silicon nanoparticle (LMSN) was uniquely customized for the antibody (infliximab, INF) to load it at high levels up to 61.3 wt% and prevent its aggregation. Exosome-like nanovesicles were isolated from ginger (GE) with a high-level production (17.5 mg kg-1). Then, ultrasound was used to coat GE onto the LMSN to obtain the biomimetic nanocomposite LMSN@GE. As expected, LMSN@GE showed advantages in the oral delivery of INF: stability in the gastrointestinal tract, colon-targeted delivery and high intestinal epithelium permeability. Amazingly, GE also presented an anti-inflammatory effect by blocking the NLRP3 inflammasome in addition to its delivery value. As a result, INF/LMSN@GE showed a significantly higher efficacy in colitis mice compared to the intravenously administered INF. This work provides new insights into colon-targeted delivery of anti-TNF-α antibodies via the oral route. Moreover, it puts forward a novel strategy for drug delivery using one therapeutic agent (herb-derived exosomes).