Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946527

RESUMEN

Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Coptis/química , Coptis chinensis , Medicamentos Herbarios Chinos/farmacología , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Ratones Desnudos , Rizoma/química , Transducción de Señal/efectos de los fármacos
2.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901917

RESUMEN

Excessive bone resorption by osteoclasts causes bone loss-related diseases and reactive oxygen species (ROS) act as second messengers in intercellular signaling pathways during osteoclast differentiation. In this study, we explored the protective effects of fermented oyster extract (FO) against receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in murine monocyte/macrophage RAW 264.7 cells. Our results showed that FO markedly inhibited RANKL-induced activation of tartrate-resistant acid phosphatase and formation of F-actin ring structure. Mechanistically, FO has been shown to down-regulate RANKL-induced expression of osteoclast-specific markers by blocking the nuclear translocation of NF-κB and the transcriptional activation of nuclear factor of activated T cells c1 (NFATc1) and c-Fos. Furthermore, FO markedly diminished ROS production by RANKL stimulation, which was associated with blocking the expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) and its regulatory subunit Rac-1. However, a small interfering RNA (siRNA) targeting NOX1 suppressed RANKL-induced expression of osteoclast-specific markers and production of ROS and attenuated osteoclast differentiation as in the FO treatment group. Collectively, our findings suggest that FO has anti-osteoclastogenic potential by inactivating the NF-κB-mediated NFATc1 and c-Fos signaling pathways and inhibiting ROS generation, followed by suppression of osteoclast-specific genes. Although further studies are needed to demonstrate efficacy in in vivo animal models, FO may be used as an effective alternative agent for the prevention and treatment of osteoclastogenic bone diseases.


Asunto(s)
Productos Biológicos/farmacología , Alimentos Fermentados , Osteogénesis/efectos de los fármacos , Ostreidae/química , Ligando RANK/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Productos Biológicos/química , Biomarcadores , Diferenciación Celular/efectos de los fármacos , Alimentos Fermentados/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Osteogénesis/genética , Transporte de Proteínas , Células RAW 264.7 , Interferencia de ARN
3.
Phytother Res ; 32(3): 504-513, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29193390

RESUMEN

Decoctions obtained from the dried flowers of Lonicera japonica Thunb. (Indongcho) have been utilized in folk remedies against inflammatory diseases. Recently, many agents that have used for inflammatory diseases are showing anticancer effects. Here, we have isolated polyphenols extracted from lyophilized Lonicera japonica Thunb (PELJ) and investigated the anticancer effects of PELJ on U937 cells. Here, we demonstrated that PELJ induced apoptosis by upregulation of DR4 and Fas, and further it is augmented by suppression of XIAP. In addition, The PELJ-induced apoptosis is at least in part by blocking PI3K/Akt pathway. These findings suggest that PELJ may provide evidence of anticancer activities on U937 cells. Further study for detailed mechanism and the effects on animal models is warranted to determine whether PELJ provide more conclusive evidence that PELJ which may provide a beneficial effect for treating cancer.


Asunto(s)
Caspasas/metabolismo , Leucemia/metabolismo , Lonicera/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Muerte Celular/metabolismo , Apoptosis , Humanos , Células U937
4.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087236

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease that is characterized by irreversible articular cartilage destruction by inflammatory reaction. Among inflammatory stimuli, interleukin-1ß (IL-1ß) is known to play a crucial role in OA pathogenesis by stimulating several mediators that contribute to cartilage degradation. Recently, the marine brown alga Sargassum serratifolium has been reported to exhibit antioxidant and anti-inflammatory effects in microglial and human umbilical vein endothelial cell models using lipopolysaccharide and tumor necrosis factor-α, but its beneficial effects on OA have not been investigated. This study aimed to evaluate the anti-osteoarthritic effects of ethanol extract of S. serratifolium (EESS) in SW1353 human chondrocytes and, in parallel, primary rat articular chondrocytes. Our results showed that EESS effectively blocked the generation of reactive oxygen species in IL-1ß-treated SW1353 and rat primary chondrocytes, indicating that EESS has a potent antioxidant activity. EESS also attenuated IL-1ß-induced production of nitric oxide (NO) and prostaglandin E2, major inflammatory mediators in these cells, which was associated with the inhibition of inducible NO synthase and cyclooxygenase-2 expression. Moreover, EESS downregulated the level of gene expression of matrix metalloproteinase (MMP)-1, -3 and -13 in SW1353 chondrocytes treated with IL-1ß, resulting in their extracellular secretion reduction. In addition, the IL-1ß-induced activation of nuclear factor-kappa B (NF-κB) was restored by EESS. Furthermore, EESS reduced the activation of p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways upon IL-1ß stimulation. These results indicate that EESS has the potential to exhibit antioxidant and anti-inflammatory effects through inactivation of the NF-κB, p38 MAPK, and PI3K/Akt signaling pathways. Collectively, these findings demonstrate that EESS may have the potential for chondroprotection, and extracts of S. serratifolium could potentially be used in the prevention and treatment of OA.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Condrocitos/efectos de los fármacos , Interleucina-1beta/inmunología , Extractos Vegetales/farmacología , Sargassum , Animales , Antiinflamatorios/química , Antioxidantes/química , Línea Celular , Células Cultivadas , Condrocitos/inmunología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Masculino , FN-kappa B/inmunología , Osteoartritis/tratamiento farmacológico , Osteoartritis/inmunología , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/inmunología , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-akt/inmunología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/inmunología , Sargassum/química , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
5.
Mar Drugs ; 15(6)2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28555064

RESUMEN

It is well known that fucoidan, a natural sulfated polysaccharide present in various brown algae, mediates anticancer effects through the induction of cell cycle arrest and apoptosis. Nevertheless, the role of tumor suppressor p53 in the mechanism action of fucoidan remains unclear. Here, we investigated the anticancer effect of fucoidan on two p53 isogenic HCT116 (p53+/+ and p53-/-) cell lines. Our results showed that inhibition of cell viability, induction of apoptosis and DNA damage by treatment with fucoidan were similar in two cell lines. Flow cytometric analysis revealed that fucoidan resulted in G1 arrest in the cell cycle progression, which correlated with the inhibition of phosphorylation of retinoblastoma protein (pRB) and concomitant association of pRB with the transcription factor E2Fs. Furthermore, treatment with fucoidan obviously upregulated the expression of cyclin-dependent kinase (CDK) inhibitors, such as p21WAF1/CIP1 and p27KIP1, which was paralleled by an enhanced binding with CDK2 and CDK4. These events also commonly occurred in both cell lines, suggesting that fucoidan triggered G1 arrest and apoptosis in HCT116 cells by a p53-independent mechanism. Thus, given that most tumors exhibit functional p53 inactivation, fucoidan could be a possible therapeutic option for cancer treatment regardless of the p53 status.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Fase G1/efectos de los fármacos , Polisacáridos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Factores de Transcripción E2F/metabolismo , Células HCT116 , Humanos , Fosforilación/efectos de los fármacos , Proteína de Retinoblastoma/metabolismo , Regulación hacia Arriba/efectos de los fármacos
6.
Gen Physiol Biophys ; 36(2): 117-128, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28218611

RESUMEN

Mammalian thioredoxin reductase (TrxR) plays a vital role in restoring cellular redox balance disrupted by reactive oxygen species (ROS) generation and oxidative damage. Here, we evaluated whether auranofin, a selective inhibitor of TrxR, could serve as a potential anti-cancer agent through its selective targeting of TrxR activity in Hep3B hepatocellular carcinoma cells. Auranofin treatment reduced the TrxR activity of these cells and induced apoptosis, which were accompanied by up-regulation of death receptors (DRs) and activation of caspases, as well as promotion of proteolytic degradation of poly(ADP-ribose)-polymerase. Treatment with a pan-caspase inhibitor reversed the auranofin-induced apoptosis and growth suppression, indicating that auranofin may induce apoptosis through a caspase-dependent mechanism involving both the intrinsic and extrinsic apoptotic pathways. Auranofin also significantly altered mitochondrial function, promoting mitochondrial membrane permeabilization and cytochrome c release by regulating Bcl-2 family proteins; these events were accompanied by an accumulation of ROS. Inhibition of ROS generation with the ROS quencher significantly attenuated the inactivation of TrxR in auranofin-treated cells and almost completely suppressed the auranofin-induced up-regulation of DRs and activation of caspases, thereby preventing auranofin-induced apoptosis and loss of cell viability. Taken together, these findings indicate that auranofin inhibition of TrxR activity in Hep3B cells activates ROS- and caspase-dependent apoptotic signaling pathways and triggers cancer cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Auranofina/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Resultado del Tratamiento
7.
Drug Dev Res ; 78(1): 37-48, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27654302

RESUMEN

Preclinical Research Fucoidan, a sulfated polysaccharide, is a compound found in various species of seaweed that has anti-viral, anti-bacterial, anti-oxidant, anti-inflammatory, and immunomodulatory activities; however, the underlying relationship between apoptosis and anti-telomerase activity has not been investigated. Here, we report that fucoidan-induced apoptosis in 5637 human bladder cancer cells was associated with an increase in the Bax/Bcl-2 ratio, the dissipation of the mitochondrial membrane potential (MMP, Δψm), and cytosolic release of cytochrome c from the mitochondria. Under the same experimental conditions, fucoidan-treatment decreased hTERT (human telomerase reverse transcriptase) expression and the transcription factors, c-myc and Sp1. This was accompanied by decreased telomerase activity. Fucoidan-treatment also suppressed activation of the PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling enhanced fucoidan-induced apoptosis and anti-telomerase activity. Meanwhile, fucoidan treatment increased the generation of intracellular ROS, whereas the over-elimination of ROS by N-acetylcysteine, an anti-oxidant, attenuated fucoidan-induced apoptosis, inhibition of hTERT, c-myc, and Sp1 expression, and reversed fucoidan-induced inactivation of the PI3K/Akt signaling pathway. Collectively, these data indicate that the induction of apoptosis and the inhibition of telomerase activity by fucoidan are mediated via ROS-dependent inactivation of the PI3K/Akt pathway. Drug Dev Res 78 : 37-48, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Polisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Telomerasa/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Apoptosis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Phytother Res ; 30(11): 1824-1832, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27534446

RESUMEN

Decoctions of the dried flowers of Lonicera japonica Thunb. (Indongcho) have been utilized in folk remedies against various inflammatory diseases, and it is reported neuroprotective effects. The cytokines release from microglia is closely linked to various chronic neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. It is still unknown whether the neuroprotective effects are associated with the antiinflammatory effects. Here, we determined whether polyphenols extracted from lyophilized Lonicera japonica Thunb. (PELJ) would inhibit inflammatory cytokines and mediators. We stimulated microglia with lipopolysaccharide (LPS) to produce inflammatory cytokines, and then assessed the effects of PELJ on these cytokines. PELJ significantly inhibited LPS-induced interleukin-1ß and tumor necrosis factor-α expressions and LPS-induced nitric oxide (NO) and prostaglandin E2 expressions by down-regulating inducible enzyme NO synthase and cyclooxygenase-2 at the protein and mRNA levels. All the suppression of these mediators did not cause any significant cytotoxicity. PELJ also inhibited the nuclear translocation of nuclear factor-kappa B and phosphorylated Akt. These findings suggest that PELJ may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases by inhibiting pro-inflammatory cytokines through inhibiting phosphoinositol 3-kinase /Akt/nuclear factor-kappa B signaling pathway. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Antiinflamatorios/metabolismo , Flavonoides/química , Flores/química , Lonicera/química , Microglía/citología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología , Transducción de Señal
9.
Drug Dev Res ; 77(2): 73-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26971531

RESUMEN

Baicalein is one of the main bioactive flavonoids found in the roots of Scutellaria baicalensis Georgi. Here, we report that baicalein-induced growth inhibition was associated with the induction of apoptosis in human lung carcinoma A549 cells. Baicalein stimulated the expression of DR5, FasL, and FADD, and activated caspase-8 by reducing the levels of FLIPs (FLICE-inhibitory proteins). The apoptotic cell death was also connected with an activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase; however, a blockage of caspase activation abolished baicalein-induced apoptotic potentials. Additionally, baicalein caused a mitochondrial membrane potential (MMP), the truncation of Bid, and the translocation of pro-apoptotic Bax to the mitochondria, thereby inducing the release of cytochrome c into the cytosol. In turn, baicalein increased the generation of reactive oxygen species (ROS); however, an ROS scavenger, N-acetylcysteine, notably attenuated baicalein-mediated loss of MMP and activation of caspases. Furthermore, baicalein activated the AMP-activated protein kinase (AMPK) signaling pathway. Consequently, baicalein-triggered cell death was attenuated by an AMPK inhibitor, but increased by an AMPK activator, compound C. Overall, the results suggest that the apoptotic activity of baicalein may be associated with caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways connected with ROS generation and AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Caspasas/metabolismo , Flavanonas/farmacología , Neoplasias Pulmonares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos
10.
Mar Drugs ; 13(5): 2666-79, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25939035

RESUMEN

This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME) prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Mioblastos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Phaeophyceae/química , Sustancias Protectoras/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Daño del ADN/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Metanol/química , Ratones , Mioblastos/metabolismo , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
11.
BMC Complement Altern Med ; 15: 17, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25653022

RESUMEN

BACKGROUND: Sargassum horneri, an edible marine brown alga, is typically distributed along the coastal seas of Korea and Japan. Although several studies have demonstrated the anti-oxidative activity of this alga, the regulatory mechanisms have not yet been defined. The aim of the present study was to examine the cytoprotective effects of S. horneri against oxidative stress-induced cell damage in C2C12 myoblasts. METHODS: We demonstrated the anti-oxidative effects of a methanol extract of S. horneri (SHME) in a hydrogen peroxide (H2O2)-stimulated C2C12 myoblast model. Cytotoxicity was determined using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay and mode of cell death by cell cycle analysis. DNA damage was measured using a comet assay and expression of phospho-histone γH2A.X (p-γH2A.X). Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate. The involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using Western blot analysis. RESULTS: SHME attenuated H2O2-induced growth inhibition and exhibited scavenging activity against intracellular ROS that were induced by H2O2. The SHME also inhibited comet tail formation, p-γH2A.X expression, and the number of sub-G1 hypodiploid cells, suggesting that it prevents H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, the SHME significantly enhanced the expression of heme oxygenase-1 (HO-1) associated with induction of nuclear factor-erythroid 2 related factor 2 (Nrf2) in a time- and concentration-dependent manner. Moreover, the protective effect of the SHME on H2O2-induced C2C12 cell damage was significantly abolished by zinc protoporphyrin IX, a HO-1 competitive inhibitor, in C2C12 cells. CONCLUSIONS: These findings suggest that the SHME augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of the Nrf2/HO-1 pathway, protecting C2C12 cells from H2O2-induced oxidative cytotoxicity.


Asunto(s)
Antioxidantes/farmacología , Productos Biológicos/farmacología , Hemo-Oxigenasa 1/metabolismo , Músculo Esquelético/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sargassum , Animales , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Japón , Ratones , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , República de Corea , Transducción de Señal/efectos de los fármacos , Activación Transcripcional , Regulación hacia Arriba
12.
BMC Complement Altern Med ; 14: 101, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24628870

RESUMEN

BACKGROUND: Poria cocos Wolf, a medicinal fungus, is widely used in traditional medicines in East Asian countries owing to its various therapeutic potentials. Although several studies have demonstrated the anti-inflammatory activity of this fungus, its underlying mechanisms have not yet been clearly defined. METHODS: In the present study, we have demonstrated the anti-inflammatory effects of ethanol extract of P. cocos (EEPC) in lipopolysaccaride (LPS)-stimulated RAW 264.7 macrophages. As inflammatory parameters, the productions of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were evaluated. We also examined the EEPC's effect on the nuclear factor-kappaB (NF-κB) signaling pathway. RESULTS: Our results indicated that EEPC exhibits a potent inhibitory effect on NO production and inhibits PGE2 release in LPS-induced macrophages without affecting cell viability. EEPC also significantly attenuated LPS-induced secretion of inflammatory cytokines IL-1ß and TNF-α. Additionally, LPS-induced expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-1ß, and TNF-α was decreased by pre-treatment with EEPC at the transcriptional level. Moreover, EEPC clearly inhibited LPS-induced nuclear translocation of NF-κB p65 subunits, which correlated with EEPC's inhibitory effects on inhibitor kappaB (IκB) degradation. Moreover, EEPC clearly suppressed the LPS-induced DNA-binding activity of NF-κB, as well as the nuclear translocation of the NF-κB p65, which correlated with EEPC's inhibitory effects on inhibitor kappaB (IκB) degradation. CONCLUSIONS: Taken together, our data indicates that EEPC targets the inflammatory response of macrophages via inhibition of iNOS, COX-2, IL-1ß, and TNF-α through inactivation of the NF-κB signaling pathway, supporting the pharmacological basis of P. cocos as a traditional herbal medicine for treatment of inflammation and its associated disorders.


Asunto(s)
Antiinflamatorios/uso terapéutico , Productos Biológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Fitoterapia , Poria , Animales , Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Inflamación/inducido químicamente , Mediadores de Inflamación/metabolismo , Interleucina-1beta/inmunología , Lipopolisacáridos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 16(1): 645-59, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25561222

RESUMEN

Evidence suggests that phytochemicals can safely modulate cancer cell biology and induce apoptosis. Here, we investigated the anti-cancer activity of morin, a flavone originally isolated from members of the Moraceae family in human leukemic cells, focusing on apoptosis. An anti-cancer effect of morin was screened with several human leukemic cell lines. U937 cells were most sensitive to morin, where it induced caspase-dependent apoptosis in a dose-dependent manner. It also induced loss of MMP (ΔΨm) along with cytochrome c release, down-regulated Bcl-2 protein, and up-regulated BAX proteins. The apoptotic activity of morin was significantly attenuated by Bcl-2 augmentation. In conclusion, morin induced caspase-dependent apoptosis through an intrinsic pathway by upregulating BAD proteins. In addition, Bcl-2 protein expression is also important in morin-induced apoptosis of U937 cells. This study provides evidence that morin might have anticancer properties in human leukemic cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Flavonoides/toxicidad , Moraceae/química , Proteína Letal Asociada a bcl/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Flavonoides/química , Células HL-60 , Humanos , Células K562 , Leucemia/metabolismo , Leucemia/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Moraceae/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células U937 , Regulación hacia Arriba/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
14.
Korean J Physiol Pharmacol ; 17(6): 511-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24381500

RESUMEN

Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation. Some two-pore domain K(+) channels (K2P), such as TASK3 and TREK1, have recently been shown to be overexpressed in cancer cells. Here we focused on the relationship between cell growth and the mechanosensitive K2P channel, TREK2, in the human bladder cancer cell line, 253J. We confirmed that TREK2 was expressed in bladder cancer cell lines by Western blot and quantitative real-time PCR. Using the patch-clamp technique, the mechanosensitive TREK2 channel was recorded in the presence of symmetrical 150 mM KCl solutions. In 253J cells, the TREK2 channel was activated by polyunsaturated fatty acids, intracellular acidosis at -60 mV and mechanical stretch at -40 mV or 40 mV. Furthermore, small interfering RNA (siRNA)-mediated TREK2 knockdown resulted in a slight depolarization from -19.9 mV±0.8 (n=116) to -8.5 mV±1.4 (n=74) and decreased proliferation of 253J cells, compared to negative control siRNA. 253J cells treated with TREK2 siRNA showed a significant increase in the expression of cell cycle boundary proteins p21 and p53 and also a remarkable decrease in protein expression of cyclins D1 and D3. Taken together, the TREK2 channel is present in bladder cancer cell lines and may, at least in part, contribute to cell cycle-dependent growth.

15.
Artículo en Inglés | MEDLINE | ID: mdl-21912568

RESUMEN

Tetraarsenic hexaoxide (As(4)O(6)) has been used in Korean folk remedy for the treatment of cancer since the late 1980s, and arsenic trioxide (As(2)O(3)) is currently used as a chemotherapeutic agent. However, evidence suggests that As(4)O(6)-induced cell death pathway was different from that of As(2)O(3). Besides, the anticancer effects and mechanisms of As(4)O(6) are not fully understood. Therefore, we investigated the anticancer activities of As(4)O(6) on apoptosis and autophagy in U937 human leukemic cells. The growth of U937 cells was inhibited by As(4)O(6) treatment in a dose- and a time-dependent manner, and IC(50) for As(4)O(6) was less than 2 µM. As(4)O(6) induced caspase-dependent apoptosis and Beclin-1-induced autophagy, both of which were significantly attenuated by Bcl-2 augmentation and N-acetylcysteine (NAC) treatment. This study suggests that As(4)O(6) should induce Beclin-1-induced autophagic cell death as well as caspase-dependent apoptosis and that it might be a promising agent for the treatment of leukemia.

16.
Biosci Trends ; 16(4): 291-300, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-35691912

RESUMEN

Loganin is a type of iridoid glycosides isolated from Corni fructus and is known to have various pharmacological properties, but studies on its antioxidant activity are still lacking. Therefore, in this study, the preventive effect of loganin on oxidative stress-mediated cellular damage in human keratinocyte HaCaT cells was investigated. Our results show that loganin pretreatment in a non-toxic concentration range significantly improved cell survival in hydrogen peroxide (H2O2)-treated HaCaT cells, which was associated with inhibition of cell cycle arrest at the G2/M phase and induction of apoptosis. H2O2-induced DNA damage and reactive oxygen species (ROS) generation were also greatly reduced in the presence of loganin. Moreover, H2O2 treatment enhanced the cytoplasmic release of cytochrome c, upregulation of the Bax/Bcl-2 ratio and degradation of cleavage of poly (ADP-ribose) polymerase, whereas loganin remarkably suppressed these changes. In addition, loganin obviously attenuated H2O2-induced autophagy while inhibiting the increased accumulation of autophagosome proteins, including as microtubule-associated protein 1 light chain 3-II and Beclin-1, and p62, an autophagy substrate protein, in H2O2-treated cells. In conclusion, our current results suggests that loganin could protect HaCaT keratinocytes from H2O2-induced cellular injury by inhibiting mitochondrial dysfunction, autophagy and apoptosis. This finding indicates the applicability of loganin in the prevention and treatment of skin diseases caused by oxidative damage.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Antioxidantes/farmacología , Apoptosis , Beclina-1/metabolismo , Citocromos c/metabolismo , Células HaCaT , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Glicósidos Iridoides/metabolismo , Glicósidos Iridoides/farmacología , Iridoides , Queratinocitos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/farmacología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribosa/metabolismo , Ribosa/farmacología , Proteína X Asociada a bcl-2/metabolismo
17.
Nutr Res Pract ; 16(3): 330-343, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35663445

RESUMEN

BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

18.
Anim Cells Syst (Seoul) ; 25(2): 119-127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234893

RESUMEN

Although previous studies have shown anti-cancer activity of betulinic acid (BA), a pentacyclic triterpenoid, against various cancer lines, the underlying molecular mechanisms are not well elucidated. In this study, we evaluated the mechanisms involved in the anti-cancer efficacy of BA in U937 human myeloid leukemia cells. BA exerted a significant cytotoxic effect on U937 cells through blocking cell cycle arrest at the G2/M phase and inducing apoptosis, and that the intracellular reactive oxygen species (ROS) levels increased after treatment with BA. The down-regulation of cyclin A and cyclin B1, and up-regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 revealed the G2/M phase arrest mechanism of BA. In addition, BA induced the cytosolic release of cytochrome c by reducing the mitochondrial membrane potential with an increasing Bax/Bcl-2 expression ratio. BA also increased the activity of caspase-9 and -3, and subsequent degradation of the poly (ADP-ribose) polymerase. However, quenching of ROS by N-acetyl-cysteine, an ROS scavenger, markedly abolished BA-induced G2/M arrest and apoptosis, indicating that the generation of ROS plays a key role in inhibiting the proliferation of U937 cells by BA treatment. Taken together, our results provide a mechanistic rationale that BA exhibits anti-cancer properties in U937 leukemia cells through ROS-dependent induction of cell cycle arrest at G2/M phase and apoptosis.

19.
EXCLI J ; 19: 1102-1119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013267

RESUMEN

Osteoblast damage by oxidative stress has been recognized as a cause of bone-related disease, including osteoporosis. Recently, we reported that fermented Pacific oyster (Crassostrea gigas) extracts (FO) inhibited osteoclastogenesis and osteoporosis, while promoting osteogenesis. However, since the beneficial potential of FO on osteoblasts is not well known, in the present study, we investigated the cytoprotective effect of FO against oxidative stress in MC3T3-E1 osteoblasts. Our results demonstrated that FO inhibited hydrogen peroxide (H2O2)-induced DNA damage and cytotoxicity through the rescue of mitochondrial function by blocking abnormal ROS accumulation. FO also prevented apoptosis by suppressing loss of mitochondrial membrane potential and cytosolic release of cytochrome c, decreasing the rate of Bax/Bcl-2 expression and reducing the activity of caspase-9 and caspase-3 in H2O2-stimulated MC3T3-E1 osteoblasts, suggesting that FO protected MC3T3-E1 osteoblasts from the induction of caspase dependent- and mitochondria-mediated apoptosis by oxidative stress. In addition, FO markedly promoted the activation of nuclear factor-erythroid-2-related factor 2 (Nrf2), which was associated with the enhanced expression of heme oxygenase-1 (HO-1). However, inhibiting the expression of HO-1 by artificially blocking the expression of Nrf2 using siRNA significantly eliminated the protective effect of FO, indicating that FO activates the Nrf2/HO-1 signaling pathway in MC3T3-E1 osteoblasts to protect against oxidative stress. Based on the present data, FO is thought to be useful as a potential therapeutic agent for the inhibition of oxidative stress in osteoblasts.

20.
Anim Cells Syst (Seoul) ; 24(1): 60-68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158617

RESUMEN

Honokiol is one of the main active components of Magnolia officinalis, and has been demonstrated to have multiple pharmacological activities against a variety of diseases. Recently, this phenolic compound is known to have antioxidant activity, but its mechanism of action remains unclear. The purpose of the current study was to evaluate the preventive effects of honokiol against oxidative stress-induced DNA damage and apoptosis in C2C12 myoblasts. The present study found that honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation. The inhibitory effect of honokiol on H2O2-induced apoptosis was associated with the up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, these results demonstrate that honokiol defends C2C12 myoblasts against H2O2-induced DNA damage and apoptosis, at least in part, by preventing mitochondrial-dependent pathway through scavenging excessive ROS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA