Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(8): 2967-2976, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30728292

RESUMEN

ERK is a key coordinator of the epithelial-to-mesenchymal transition (EMT) in that a variety of EMT-inducing factors activate signaling pathways that converge on ERK to regulate EMT transcription programs. However, the mechanisms by which ERK controls the EMT program are not well understood. Through an analysis of the global changes of gene expression mediated by ERK2, we identified the transcription factor FoxO1 as a potential mediator of ERK2-induced EMT, and thus we investigated the mechanism by which ERK2 regulates FoxO1. Additionally, our analysis revealed that ERK2 induced the expression of Dock10, a Rac1/Cdc42 GEF, during EMT. We demonstrate that the activation of the Rac1/JNK signaling axis downstream of Dock10 leads to an increase in FoxO1 expression and EMT. Taken together, our study uncovers mechanisms by which epithelial cells acquire less proliferative but more migratory mesenchymal properties and reveals potential therapeutic targets for cancers evolving into a metastatic disease state.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Proteína Forkhead Box O1/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Línea Celular Tumoral , Regulación de la Expresión Génica/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Activación Transcripcional/genética , Proteína de Unión al GTP rac1/genética
2.
Exp Cell Res ; 379(1): 55-64, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30922922

RESUMEN

Metabolic studies of human pluripotent stem cells (hPSCs) have focused on how the cells produce energy through the catabolic pathway. The less-studied anabolic pathway, by which hPSCs expend energy in the form of adenosine triphosphate (ATP), is not yet fully understood. Compared to fully differentiated somatic cells, hPSCs undergo significant changes not only in their gene expression but also in their production and/or expenditure of ATP. Here, we investigate how hPSCs tightly control their energy homeostasis by studying the main energy-consuming process, mRNA translation. In addition, change of subcellular organelles regarding energy homeostasis has been investigated. Lysosomes are organelles that play an important role in the elimination of unnecessary cellular materials by digestion and in the recycling system of the cell. We have found that hPSCs control their lysosome numbers in part by regulating lysosomal gene/protein expression. Thus, because the levels of mRNA translation rate are lower in hPSCs than in somatic cells, not only the global translational machinery but also the lysosomal recycling machinery is suppressed in hPSCs. Overall, the results of our study suggest that hPSCs reprogram gene expression and signaling to regulate energy-consuming processes and energy-controlling organelles.


Asunto(s)
Metabolismo Energético/fisiología , Orgánulos/metabolismo , Células Madre Pluripotentes/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Lisosomas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
3.
Mol Psychiatry ; 23(11): 2167-2183, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29449635

RESUMEN

Accumulating evidence suggests that cerebellar dysfunction early in life is associated with autism spectrum disorder (ASD), but the molecular mechanisms underlying the cerebellar deficits at the cellular level are unclear. Tuberous sclerosis complex (TSC) is a neurocutaneous disorder that often presents with ASD. Here, we developed a cerebellar Purkinje cell (PC) model of TSC with patient-derived human induced pluripotent stem cells (hiPSCs) to characterize the molecular mechanisms underlying cerebellar abnormalities in ASD and TSC. Our results show that hiPSC-derived PCs from patients with pathogenic TSC2 mutations displayed mTORC1 pathway hyperactivation, defects in neuronal differentiation and RNA regulation, hypoexcitability and reduced synaptic activity when compared with those derived from controls. Our gene expression analyses revealed downregulation of several components of fragile X mental retardation protein (FMRP) targets in TSC2-deficient hiPSC-PCs. We detected decreased expression of FMRP, glutamate receptor δ2 (GRID2), and pre- and post-synaptic markers such as synaptophysin and PSD95 in the TSC2-deficient hiPSC-PCs. The mTOR inhibitor rapamycin rescued the deficits in differentiation, synaptic dysfunction, and hypoexcitability of TSC2 mutant hiPSC-PCs in vitro. Our findings suggest that these gene expression changes and cellular abnormalities contribute to aberrant PC function during development in TSC affected individuals.


Asunto(s)
Células de Purkinje/metabolismo , Esclerosis Tuberosa/metabolismo , Adulto , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/metabolismo , Enfermedades Cerebelosas/metabolismo , Cerebelo/metabolismo , Niño , Preescolar , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Modelos Biológicos , Células de Purkinje/patología , Sirolimus/farmacología , Sinapsis/metabolismo , Sinapsis/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/fisiopatología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
4.
Proc Natl Acad Sci U S A ; 112(28): 8756-61, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124091

RESUMEN

Parkinson's disease (PD), primarily caused by selective degeneration of midbrain dopamine (mDA) neurons, is the most prevalent movement disorder, affecting 1-2% of the global population over the age of 65. Currently available pharmacological treatments are largely symptomatic and lose their efficacy over time with accompanying severe side effects such as dyskinesia. Thus, there is an unmet clinical need to develop mechanism-based and/or disease-modifying treatments. Based on the unique dual role of the nuclear orphan receptor Nurr1 for development and maintenance of mDA neurons and their protection from inflammation-induced death, we hypothesize that Nurr1 can be a molecular target for neuroprotective therapeutic development for PD. Here we show successful identification of Nurr1 agonists sharing an identical chemical scaffold, 4-amino-7-chloroquinoline, suggesting a critical structure-activity relationship. In particular, we found that two antimalarial drugs, amodiaquine and chloroquine stimulate the transcriptional function of Nurr1 through physical interaction with its ligand binding domain (LBD). Remarkably, these compounds were able to enhance the contrasting dual functions of Nurr1 by further increasing transcriptional activation of mDA-specific genes and further enhancing transrepression of neurotoxic proinflammatory gene expression in microglia. Importantly, these compounds significantly improved behavioral deficits in 6-hydroxydopamine lesioned rat model of PD without any detectable signs of dyskinesia-like behavior. These findings offer proof of principle that small molecules targeting the Nurr1 LBD can be used as a mechanism-based and neuroprotective strategy for PD.


Asunto(s)
Conducta Animal/efectos de los fármacos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/agonistas , Enfermedad de Parkinson/psicología , Amodiaquina/metabolismo , Amodiaquina/farmacología , Animales , Cloroquina/metabolismo , Cloroquina/farmacología , Modelos Animales de Enfermedad , Ligandos , Neurogénesis , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Ratas
5.
Biochem Biophys Res Commun ; 492(2): 154-160, 2017 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-28802578

RESUMEN

Induced pluripotent stem cells (iPSCs) technology is a method for generating pluripotent stem cells in vitro from fully differentiated cells such as fibroblast cells. The potential applications of iPSC technology in cell therapy and disease modeling could influence current medical practices. Despite current advances in iPSC technology, many patient-derived reprogrammed cells are not suitable for clinical trial because most protocols rely on virus-based techniques, which pose the risk of integration of the viral genome into the chromosomes. Therefore, non-viral methods such as mRNA and protein-based reprogramming are promising alternatives when generating clinically safe iPSCs. In a previous study, we generated human iPSCs using cell extracts with cell penetration peptide (CPP) for the delivery of reprogramming proteins [Kim et al. Cell Stem Cells, 2009]. In here, we show that the expression of reprogramming factors in mammalian cells and subsequent purification of these factors by FLAG-Tag could reprogram fibroblasts into iPSCs.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Células Cultivadas , Fibroblastos/metabolismo , Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(35): E3281-90, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23918355

RESUMEN

The future of safe cell-based therapy rests on overcoming teratoma/tumor formation, in particular when using human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation, complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile, we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e., survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors, leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular, a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g., quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast, differentiated cell types (e.g., dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together, these results provide the "proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy.


Asunto(s)
Células Madre Pluripotentes/citología , Bibliotecas de Moléculas Pequeñas , Teratoma/patología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Apoptosis , Proteína 10 de la LLC-Linfoma de Células B , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Imidazoles/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Mitocondrias/metabolismo , Naftoquinonas/farmacología , Células Madre Pluripotentes/metabolismo , Trasplante de Células Madre , Survivin , Teratoma/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(6): 2082-7, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341631

RESUMEN

Intracellular delivery of macromolecules is a challenge in research and therapeutic applications. Existing vector-based and physical methods have limitations, including their reliance on exogenous materials or electrical fields, which can lead to toxicity or off-target effects. We describe a microfluidic approach to delivery in which cells are mechanically deformed as they pass through a constriction 30-80% smaller than the cell diameter. The resulting controlled application of compression and shear forces results in the formation of transient holes that enable the diffusion of material from the surrounding buffer into the cytosol. The method has demonstrated the ability to deliver a range of material, such as carbon nanotubes, proteins, and siRNA, to 11 cell types, including embryonic stem cells and immune cells. When used for the delivery of transcription factors, the microfluidic devices produced a 10-fold improvement in colony formation relative to electroporation and cell-penetrating peptides. Indeed, its ability to deliver structurally diverse materials and its applicability to difficult-to-transfect primary cells indicate that this method could potentially enable many research and clinical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Técnicas Analíticas Microfluídicas , Animales , Fenómenos Biomecánicos , Permeabilidad de la Membrana Celular , Forma de la Célula , Células Cultivadas , Citosol/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Difusión , Expresión Génica , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Nanotubos de Carbono , Proteínas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación
9.
Biochem Biophys Res Commun ; 450(1): 802-7, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24952159

RESUMEN

Post-translational modifications (PTMs) of histones such as phosphorylation, acetylation, and ubiquitination, collectively referred to as the "histone-code", have been known to regulate gene expression and chromatin condensation for over a decade. They are also implicated in processes such as DNA repair and apoptosis. However, the study of the phosphorylation of histones has been mainly focused on chromosome condensation and mitosis. Therefore, the phosphorylation of histones in apoptosis is not fully understood. It was recently demonstrated by Tang et al. that histones are released from nucleosome during apoptosis, an observation that is in agreement with our findings. In addition to the release of histones, the dephosphorylation of histone H3 at Thr-3 and Ser-10 was observed during apoptosis in some cancer cells. Our data suggest that the modification and release of histones could serve markers of apoptosis in human cancer cells. We also suggest that the released histones, especially H3, could be translocated to mitochondria during apoptosis.


Asunto(s)
Apoptosis/fisiología , Histonas/metabolismo , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estaurosporina/farmacología , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Células Jurkat , Mitocondrias/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos
10.
Stem Cell Res ; 81: 103532, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276527

RESUMEN

Induced pluripotent stem cells (iPSCs) harboring patient derived SAMD9 mutation offer a unique platform to study the multi-organ involvement observed in this rare disease, referred to as myelodysplasia, infections, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy (MIRAGE) syndrome. The pluripotent nature of iPSCs allows in vitro differentiation into various somatic cell types representing multiple organ systems affected in SAMD9-mutated patients. Hence, in this paper, we present a CRISPR/Cas9-engineered iPSC model carrying SAMD9 c.2948T>G, p.I983S mutation previously reported in two patients with severe MIRAGE syndrome.

11.
Cell Rep ; 42(8): 112868, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494188

RESUMEN

Cells maintain and dynamically change their proteomes according to the environment and their needs. Mechanistic target of rapamycin (mTOR) is a key regulator of proteostasis, homeostasis of the proteome. Thus, dysregulation of mTOR leads to changes in proteostasis and the consequent progression of diseases, including cancer. Based on the physiological and clinical importance of mTOR signaling, we investigated mTOR feedback signaling, proteostasis, and cell fate. Here, we reveal that mTOR targeting inhibits eIF4E-mediated cap-dependent translation, but feedback signaling activates a translation initiation factor, eukaryotic translation initiation factor 3D (eIF3D), to sustain alternative non-canonical translation mechanisms. Importantly, eIF3D-mediated protein synthesis enables cell phenotype switching from proliferative to more migratory. eIF3D cooperates with mRNA-binding proteins such as heterogeneous nuclear ribonucleoprotein F (hnRNPF), heterogeneous nuclear ribonucleoprotein K (hnRNPK), and Sjogren syndrome antigen B (SSB) to support selective mRNA translation following mTOR inhibition, which upregulates and activates proteins involved in insulin receptor (INSR)/insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate (IRS) and interleukin 6 signal transducer (IL-6ST)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. Our study highlights the mechanisms by which cells establish the dynamic change of proteostasis and the resulting phenotype switch.


Asunto(s)
Proteostasis , Receptor de Insulina , ARN Mensajero/metabolismo , Receptor de Insulina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus , Biosíntesis de Proteínas
12.
Front Psychiatry ; 13: 924956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405918

RESUMEN

16p13.11 copy number variants (CNVs) have been associated with autism, schizophrenia, psychosis, intellectual disability, and epilepsy. The majority of 16p13.11 deletions or duplications occur within three well-defined intervals, and despite growing knowledge of the functions of individual genes within these intervals, the molecular mechanisms that underlie commonly observed clinical phenotypes remain largely unknown. Patient-derived, induced pluripotent stem cells (iPSCs) provide a platform for investigating the morphological, electrophysiological, and gene-expression changes that result from 16p13.11 CNVs in human-derived neurons. Patient derived iPSCs with varying sizes of 16p13.11 deletions and familial controls were differentiated into cortical neurons for phenotypic analysis. High-content imaging and morphological analysis of patient-derived neurons demonstrated an increase in neurite branching in patients compared with controls. Whole-transcriptome sequencing revealed expression level changes in neuron development and synaptic-related gene families, suggesting a defect in synapse formation. Subsequent quantification of synapse number demonstrated increased numbers of synapses on neurons derived from early-onset patients compared to controls. The identification of common phenotypes among neurons derived from patients with overlapping 16p13.11 deletions will further assist in ascertaining common pathways and targets that could be utilized for screening drug candidates. These studies can help to improve future treatment options and clinical outcomes for 16p13.11 deletion patients.

13.
J Biol Chem ; 285(10): 7417-29, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20042612

RESUMEN

A member of the sirtuin family of NAD(+)-dependent deacetylases, SIRT3, is located in mammalian mitochondria and is important for regulation of mitochondrial metabolism, cell survival, and longevity. In this study, MRPL10 (mitochondrial ribosomal protein L10) was identified as the major acetylated protein in the mitochondrial ribosome. Ribosome-associated SIRT3 was found to be responsible for deacetylation of MRPL10 in an NAD(+)-dependent manner. We mapped the acetylated Lys residues by tandem mass spectrometry and determined the role of these residues in acetylation of MRPL10 by site-directed mutagenesis. Furthermore, we observed that the increased acetylation of MRPL10 led to an increase in translational activity of mitochondrial ribosomes in Sirt3(-/-) mice. In a similar manner, ectopic expression and knockdown of SIRT3 in C2C12 cells resulted in the suppression and enhancement of mitochondrial protein synthesis, respectively. Our findings constitute the first evidence for the regulation of mitochondrial protein synthesis by the reversible acetylation of the mitochondrial ribosome and characterize MRPL10 as a novel substrate of the NAD(+)-dependent deacetylase, SIRT3.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , Proteínas Ribosómicas/metabolismo , Sirtuina 3/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Bovinos , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/genética , Péptidos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Alineación de Secuencia , Sirtuina 3/química , Sirtuina 3/genética , Técnicas del Sistema de Dos Híbridos
14.
Protein Expr Purif ; 78(1): 48-54, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21453772

RESUMEN

Bacterial ribosomal L7/L12 stalk is formed by L10, L11, and multiple copies of L7/L12, which plays an essential role in recruiting initiation and elongation factors during translation. The homologs of these proteins, MRPL10, MRPL11, and MRPL12, are present in human mitochondrial ribosomes. To evaluate the role of MRPL10, MRPL11, and MRPL12 in translation, we over-expressed and purified components of the human mitochondrial L7/L12 stalk proteins in Escherichia coli. Here, we designed a construct to co-express MRPL10 and MRPL12 using a duet expression system to form a functional MRPL10-MRPL12 complex. The goal is to demonstrate the homology between the mitochondrial and bacterial L7/L12 stalk proteins and to reconstitute a hybrid ribosome to be used in structural and functional studies of the mitochondrial stalk.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Nucleares/química , Proteínas Ribosómicas/química , Ribosomas/química , Secuencia de Aminoácidos , Animales , Western Blotting , Bovinos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Cromatografía de Afinidad , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Proteínas Nucleares/metabolismo , Cloruro de Potasio/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Alineación de Secuencia , Solubilidad
15.
Biochemistry ; 49(2): 304-11, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20000467

RESUMEN

A member of the sirtuin family of NAD(+)-dependent deacetylases, SIRT3, is identified as one of the major mitochondrial deacetylases located in mammalian mitochondria responsible for deacetylation of several metabolic enzymes and components of oxidative phosphorylation. Regulation of protein deacetylation by SIRT3 is important for mitochondrial metabolism, cell survival, and longevity. In this study, we identified one of the Complex II subunits, succinate dehydrogenase flavoprotein (SdhA) subunit, as a novel SIRT3 substrate in SIRT3 knockout mice. Several acetylated Lys residues were mapped by tandem mass spectrometry, and we determined the role of acetylation in Complex II activity in SIRT3 knockout mice. In agreement with SIRT3-dependent activation of Complex I, we observed that deacetylation of the SdhA subunit increased the Complex II activity in wild-type mice. In addition, we treated K562 cell lines with nicotinamide and kaempferol to inhibit deacetylase activity of SIRT3 and stimulate SIRT3 expression, respectively. Stimulation of SIRT3 expression decreased the level of acetylation of the SdhA subunit and increased Complex II activity in kaempherol-treated cells compared to control and nicotinamide-treated cells. Evaluation of acetylated residues in the SdhA crystal structure from porcine and chicken suggests that acetylation of the hydrophilic surface of SdhA may control the entry of the substrate into the active site of the protein and regulate the enzyme activity. Our findings constitute the first evidence of the regulation of Complex II activity by the reversible acetylation of the SdhA subunit as a novel substrate of the NAD(+)-dependent deacetylase, SIRT3.


Asunto(s)
Mitocondrias/enzimología , Sirtuina 3/metabolismo , Succinato Deshidrogenasa/metabolismo , Acetilación , Animales , Línea Celular , Cartilla de ADN , Homeostasis , Ratones , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Reacción en Cadena de la Polimerasa , Conformación Proteica , Procesamiento Proteico-Postraduccional , Sirtuina 3/química , Sirtuina 3/genética , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/genética
16.
Stem Cell Res ; 46: 101836, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32485644

RESUMEN

Sialidosis is an autosomal recessive lysosomal storage disease, belonging to the glycoproteinoses. The disease is caused by deficiency of the sialic acid-cleaving enzyme, sialidase 1 or neuraminidase 1 (NEU1). Patients with sialidosis are classified based on the age of onset and severity of the clinical symptoms into type I (normomorphic) and type II (dysmorphic). Patient-derived skin fibroblasts from both disease types were reprogrammed using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit. iPSCs were characterized for pluripotency, three germ-layer differentiation, normal karyotype and absence of viral components. These cell lines represent a valuable resource to model sialidosis and to screen for therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mucolipidosis , Diferenciación Celular , Fibroblastos , Humanos , Mucolipidosis/genética , Mutación , Neuraminidasa/genética
17.
Biochem Biophys Rep ; 20: 100656, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31467990

RESUMEN

Naïve pluripotent stem cells (PSCs) display a distinctive phenotype when compared to their "primed" counterparts, including, but not limited to, increased potency to differentiate and more robust mitochondrial respiration. The cultivation and maintenance of naïve PSCs have been notoriously challenging, requiring the use of complex cytokine cocktails. NME7AB is a newly discovered embryonic stem cell growth factor that is expressed exclusively in the first few days of human blastocyst development. It has been previously reported that growing primed induced PSCs (iPSCs) in bFGF-depleted medium with NME7AB as the only added growth factor facilitates the regression of these cells to their naïve state. Here, we confirm this regression by demonstrating the reactivation of mitochondrial function in the induced naïve-like PSCs and increased ATP production in these cells, as compared to that in primed iPSCs.

18.
BMB Rep ; 52(5): 324-329, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30293549

RESUMEN

Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols [BMB Reports 2019; 52(5): 324-329].


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Técnicas de Reprogramación Celular/métodos , Polilisina/metabolismo , Amodiaquina/farmacología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Péptidos de Penetración Celular/farmacología , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Péptidos/uso terapéutico , Polilisina/uso terapéutico , Factores de Transcripción/metabolismo
19.
Nat Commun ; 10(1): 3623, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399583

RESUMEN

Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.


Asunto(s)
Autofagia/fisiología , Epigénesis Genética , Lisosomas/metabolismo , Biogénesis de Organelos , Politetrafluoroetileno/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Sitios de Unión , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Células Madre , Transcripción Genética
20.
J Neurochem ; 107(2): 497-509, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18710415

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which down-regulate inflammatory signaling pathways. Therefore, we hypothesized that alterations of PPAR functions can contribute to human immunodeficiency virus-1 (HIV-1)-induced dysfunction of brain endothelial cells. Indeed, treatment with HIV-1 transactivator of transcription (Tat) protein decreased PPAR transactivation in brain endothelial cells. We next stably over-expressed PPARalpha and PPARgamma in a newly developed cell line of human brain endothelial cells (hCMEC/D3 cells). Tat-induced up-regulation of inflammatory mediators, such as interleukin (IL)-1beta, tumor necrosis factor-alpha, CCL2, and E-selectin were markedly attenuated in hCMEC/D3 over-expressing PPARalpha or PPARgamma. These results were confirmed in CCL2 and E-selectin promoter activity studies. Similar protective effects were observed in hCMEC/D3 after activation of PPARgamma by exogenous PPAR agonists (dPGJ(2) and rosiglitazone). PPAR over-expression also prevented Tat-induced binding activity and transactivation of nuclear factor-kappaB. Importantly, increased PPAR activity attenuated induction of IL-1beta, tumor necrosis factor-alpha, CCL2, and E-selectin in hCMEC/D3 cells co-cultured with HIV-1-infected Jurkat cells. The protective effects of PPAR over-expression were reversed by the antagonists of PPARalpha (MK886) or PPARgamma (GW9662). The present data suggest that targeting PPAR signaling may provide a novel therapeutic approach to attenuate HIV-1-induced local inflammatory responses in brain endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/virología , VIH/fisiología , Microvasos/citología , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Antineoplásicos/farmacología , Encéfalo/anatomía & histología , Línea Celular Transformada , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Selectina E/metabolismo , Células Endoteliales/efectos de los fármacos , Productos del Gen tat/farmacología , Humanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacología , Activación Transcripcional/efectos de los fármacos , Transfección/métodos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA