Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(6): 765-767, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31048759

RESUMEN

In the version of this article initially published, two arrows in the far right plot of Fig. 3c were aimed incorrectly, and the error bars were missing in Fig. 6e,f. In Fig. 3c, the arrow labeled '5-LOX' should be aimed at the plot measuring LXB4, and the arrow labeled 'LTA4H' should be aimed at the plot measuring LTB4. The errors have been corrected in the HTML and PDF versions of the article.

2.
Nat Immunol ; 20(5): 626-636, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30936495

RESUMEN

Muscle damage elicits a sterile immune response that facilitates complete regeneration. Here, we used mass spectrometry-based lipidomics to map the mediator lipidome during the transition from inflammation to resolution and regeneration in skeletal muscle injury. We observed temporal regulation of glycerophospholipids and production of pro-inflammatory lipid mediators (for example, leukotrienes and prostaglandins) and specialized pro-resolving lipid mediators (for example, resolvins and lipoxins) that were modulated by ibuprofen. These time-dependent profiles were recapitulated in sorted neutrophils and Ly6Chi and Ly6Clo muscle-infiltrating macrophages, with a distinct pro-resolving signature observed in Ly6Clo macrophages. RNA sequencing of macrophages stimulated with resolvin D2 showed similarities to transcriptional changes found during the temporal transition from Ly6Chi macrophage to Ly6Clo macrophage. In vivo, resolvin D2 increased Ly6Clo macrophages and functional improvement of the regenerating muscle. These results reveal dynamic lipid mediator signatures of innate immune cells and provide a proof of concept for their exploitable effector roles in muscle regeneration.


Asunto(s)
Mediadores de Inflamación/inmunología , Lípidos/inmunología , Macrófagos/inmunología , Músculo Esquelético/inmunología , Regeneración/inmunología , Animales , Ácidos Docosahexaenoicos/inmunología , Ácidos Docosahexaenoicos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Metabolismo de los Lípidos/inmunología , Lípidos/análisis , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Músculo Esquelético/fisiopatología , Regeneración/genética
3.
EMBO J ; 41(23): e110771, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36300838

RESUMEN

Autophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy. We reveal for the first time that genetic loss of PC biosynthesis via the CDP-DAG pathway leads to changes in lipid composition of autophagic membranes, specifically replacement of PC by phosphatidylserine (PS). This impairs closure of the autophagic membrane and autophagic flux. Consequently, we show that choline-dependent recovery of de novo PC biosynthesis via the CDP-choline pathway restores autophagosome formation and autophagic flux in PC-deficient cells. Our findings therefore implicate phospholipid metabolism in autophagosome biogenesis.


Asunto(s)
Autofagosomas , Fosfolípidos , Autofagosomas/metabolismo , Fosfolípidos/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Colina/metabolismo , Citidina Difosfato/metabolismo
4.
PLoS Biol ; 21(11): e3002367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37967106

RESUMEN

In mammals, O2 and CO2 levels are tightly regulated and are altered under various pathological conditions. While the molecular mechanisms that participate in O2 sensing are well characterized, little is known regarding the signaling pathways that participate in CO2 signaling and adaptation. Here, we show that CO2 levels control a distinct cellular transcriptional response that differs from mere pH changes. Unexpectedly, we discovered that CO2 regulates the expression of cholesterogenic genes in a SREBP2-dependent manner and modulates cellular cholesterol accumulation. Molecular dissection of the underlying mechanism suggests that CO2 triggers SREBP2 activation through changes in endoplasmic reticulum (ER) membrane cholesterol levels. Collectively, we propose that SREBP2 participates in CO2 signaling and that cellular cholesterol levels can be modulated by CO2 through SREBP2.


Asunto(s)
Dióxido de Carbono , Colesterol , Animales , Colesterol/metabolismo , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Mamíferos/metabolismo
5.
J Biol Chem ; 300(6): 107351, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718868

RESUMEN

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.

6.
Mol Psychiatry ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849517

RESUMEN

Major Depressive Disorder (MDD) is a common, frequently chronic condition characterized by substantial molecular alterations and pathway dysregulations. Single metabolite and targeted metabolomics platforms have revealed several metabolic alterations in depression, including energy metabolism, neurotransmission, and lipid metabolism. More comprehensive coverage of the metabolome is needed to further specify metabolic dysregulations in depression and reveal previously untargeted mechanisms. Here, we measured 820 metabolites using the metabolome-wide Metabolon platform in 2770 subjects from a large Dutch clinical cohort with extensive clinical phenotyping (1101 current MDD, 868 remitted MDD, 801 healthy controls) at baseline, which were repeated in 1805 subjects at 6-year follow up (327 current MDD, 1045 remitted MDD, 433 healthy controls). MDD diagnosis was based on DSM-IV psychiatric interviews. Depression severity was measured with the Inventory of Depressive Symptomatology Self-report. Associations between metabolites and MDD status and depression severity were assessed at baseline and at 6-year follow-up. At baseline, 139 and 126 metabolites were associated with current MDD status and depression severity, respectively, with 79 overlapping metabolites. Adding body mass index and lipid-lowering medication to the models changed results only marginally. Among the overlapping metabolites, 34 were confirmed in internal replication analyses using 6-year follow-up data. Downregulated metabolites were enriched with long-chain monounsaturated (P = 6.7e-07) and saturated (P = 3.2e-05) fatty acids; upregulated metabolites were enriched with lysophospholipids (P = 3.4e-4). Mendelian randomization analyses using genetic instruments for metabolites (N = 14,000) and MDD (N = 800,000) showed that genetically predicted higher levels of the lysophospholipid 1-linoleoyl-GPE (18:2) were associated with greater risk of depression. The identified metabolome-wide profile of depression indicated altered lipid metabolism with downregulation of long-chain fatty acids and upregulation of lysophospholipids, for which causal involvement was suggested using genetic tools. This metabolomics signature offers a window on depression pathophysiology and a potential access point for the development of novel therapeutic approaches.

7.
Mol Psychiatry ; 29(3): 809-819, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38135757

RESUMEN

ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Células Madre Pluripotentes Inducidas , Metabolismo de los Lípidos , Ratones Noqueados , Mitocondrias , Neuronas , Mitocondrias/metabolismo , Neuronas/metabolismo , Humanos , Animales , Metabolismo de los Lípidos/fisiología , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo
8.
Mol Cell Proteomics ; 22(6): 100559, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105363

RESUMEN

The 2nd CASMS conference was held virtually through Gather. Town platform from October 17 to 21, 2022, with a total of 363 registrants including an outstanding and diverse group of scientists at the forefront of their research fields from both academia and industry worldwide, especially in the United States and China. The conference offered a 5-day agenda with an exciting scientific program consisting of two plenary lectures, 14 parallel symposia, and 4 special sessions in which a total of 97 invited speakers presented technological innovations and their applications in proteomics & biological mass spectrometry and metabo-lipidomics & pharmaceutical mass spectrometry. In addition, 18 invited speakers/panelists presented at 3 research-focused and 2 career development workshops. Moreover, 144 posters, 54 lightning talks, 5 sponsored workshops, and 14 exhibitions were presented, from which 20 posters and 8 lightning talks received presentation awards. Furthermore, the conference featured 1 MCP lectureship and 5 young investigator awardees for the first time to highlight outstanding mid-career and early-career rising stars in mass spectrometry from our society. The conference provided a unique scientific platform for young scientists (i.e., graduate students, postdocs and junior faculty/investigators) to present their research, meet with prominent scientists, and learn about career development and job opportunities (http://casms.org).


Asunto(s)
Espectrometría de Masas , Sociedades Científicas , Humanos , China , Preparaciones Farmacéuticas , Proteómica , Estados Unidos
9.
J Biol Chem ; 299(9): 105162, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586586

RESUMEN

Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound ß-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor ß1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.


Asunto(s)
Neoplasias , Enfermedad del Hígado Graso no Alcohólico , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Humanos , Ratones , Fructosa/efectos adversos , Glucosilceramidas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Neoplasias/genética , Neoplasias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidiletanolaminas/sangre , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Ratones Noqueados , Masculino , Femenino , Dieta Alta en Grasa/efectos adversos
10.
Gastroenterology ; 164(1): 134-146, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181835

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease is highly associated with obesity and progresses to nonalcoholic steatohepatitis when the liver develops overt inflammatory damage. While removing adenosine in the purine salvage pathway, adenosine kinase (ADK) regulates methylation reactions. We aimed to study whether hepatocyte ADK functions as an obesogenic gene/enzyme to promote excessive fat deposition and liver inflammation. METHODS: Liver sections of human subjects were examined for ADK expression using immunohistochemistry. Mice with hepatocyte-specific ADK disruption or overexpression were examined for hepatic fat deposition and inflammation. Liver lipidomics, hepatocyte RNA sequencing (RNA-seq), and single-cell RNA-seq for liver nonparenchymal cells were performed to analyze ADK regulation of hepatocyte metabolic responses and hepatocyte-nonparenchymal cells crosstalk. RESULTS: Whereas patients with nonalcoholic fatty liver disease had increased hepatic ADK levels, mice with hepatocyte-specific ADK disruption displayed decreased hepatic fat deposition on a chow diet and were protected from diet-induced excessive hepatic fat deposition and inflammation. In contrast, mice with hepatocyte-specific ADK overexpression displayed increased body weight and adiposity and elevated degrees of hepatic steatosis and inflammation compared with control mice. RNA-seq and epigenetic analyses indicated that ADK increased hepatic DNA methylation and decreased hepatic Ppara expression and fatty acid oxidation. Lipidomic and single-cell RNA-seq analyses indicated that ADK-driven hepatocyte factors, due to mitochondrial dysfunction, enhanced macrophage proinflammatory activation in manners involving increased expression of stimulator of interferon genes. CONCLUSIONS: Hepatocyte ADK functions to promote excessive fat deposition and liver inflammation through suppressing hepatocyte fatty acid oxidation and producing hepatocyte-derived proinflammatory mediators. Therefore, hepatocyte ADK is a therapeutic target for managing obesity and nonalcoholic fatty liver disease.


Asunto(s)
Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Hepatocitos/metabolismo , Hepatitis/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Inflamación/metabolismo , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa
11.
Hepatology ; 78(5): 1506-1524, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129868

RESUMEN

BACKGROUND AND AIMS: Lipid accumulation induced by alcohol consumption is not only an early pathophysiological response but also a prerequisite for the progression of alcohol-associated liver disease (ALD). Alternative splicing regulates gene expression and protein diversity; dysregulation of this process is implicated in human liver diseases. However, how the alternative splicing regulation of lipid metabolism contributes to the pathogenesis of ALD remains undefined. APPROACH AND RESULTS: Serine-arginine-rich protein kinase 2 (SRPK2), a key kinase controlling alternative splicing, is activated in hepatocytes in response to alcohol, in mice with chronic-plus-binge alcohol feeding, and in patients with ALD. Such induction activates sterol regulatory element-binding protein 1 and promotes lipogenesis in ALD. Overexpression of FGF21 in transgenic mice abolishes alcohol-mediated induction of SRPK2 and its associated steatosis, lipotoxicity, and inflammation; these alcohol-induced pathologies are exacerbated in FGF21 knockout mice. Mechanistically, SRPK2 is required for alcohol-mediated impairment of serine-arginine splicing factor 10, which generates exon 7 inclusion in lipin 1 and triggers concurrent induction of lipogenic regulators-lipin 1ß and sterol regulatory element-binding protein 1. FGF21 suppresses alcohol-induced SRPK2 accumulation through mammalian target of rapamycin complex 1 inhibition-dependent degradation of SRPK2. Silencing SRPK2 rescues alcohol-induced splicing dysregulation and liver injury in FGF21 knockout mice. CONCLUSIONS: These studies reveal that (1) the regulation of alternative splicing by SRPK2 is implicated in lipogenesis in humans with ALD; (2) FGF21 is a key hepatokine that ameliorates ALD pathologies largely by inhibiting SRPK2; and (3) targeting SRPK2 signaling by FGF21 may offer potential therapeutic approaches to combat ALD.


Asunto(s)
Arginina Quinasa , Hepatopatías Alcohólicas , Humanos , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Lipogénesis/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Arginina Quinasa/genética , Arginina Quinasa/metabolismo , Empalme Alternativo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Etanol/toxicidad , Ratones Noqueados , Mamíferos/metabolismo
12.
J Vasc Surg ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768832

RESUMEN

OBJECTIVE: The incidence of splenic artery aneurysms (SAAs) has increased with advances in imaging techniques, necessitating a comprehensive classification to guide treatment strategies. This study aims to propose a novel classification system for SAAs based on aneurysm characteristics and to review treatment outcomes at our center. METHODS: This retrospective study included 113 patients with SAAs admitted to Peking Union Medical College Hospital from January 2019 to December 2023, assessed using computed tomography angiography or digital subtraction angiography. A new classification system was devised based on the aneurysm location, morphology, integrity, and parent artery anatomy. Treatment strategies were determined based on these characteristics, with interventions ranging from endovascular therapy to laparoscopic and open surgery. Patients were followed up after the intervention to assess mortality, complications, reinterventions, and aneurysm-related outcomes. RESULTS: The study cohort of 113 patients with 127 SAAs had a predominance of female patients (63.7%) and a mean age of 52.7 years. The SAAs were classified into five types, with type I being the most common. The intervention techniques varied across types, with sac embolization, covered stent implantation, and artery embolization being the most frequently used. The overall technical success rate was 94.7%, with perioperative complication and reintervention rates of 25.0% and 0.9%, respectively, and no deaths within 30 days after the intervention. The median follow-up duration was 21 months, with overall complications rate of 3.5% and no aneurysm-related complications or deaths. CONCLUSIONS: The proposed classification system effectively guides the selection of treatment strategies for SAAs, incorporating key anatomical and morphological features. This system facilitated high technical success and low complication rates, underscoring the importance of tailored techniques in managing SAAs.

13.
Mol Cell ; 62(4): 636-48, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27161994

RESUMEN

Cells have evolved mechanisms to handle incompatible processes through temporal organization by circadian clocks and by spatial compartmentalization within organelles defined by lipid bilayers. Recent advances in lipidomics have led to identification of plentiful lipid species, yet our knowledge regarding their spatiotemporal organization is lagging behind. In this study, we quantitatively characterized the nuclear and mitochondrial lipidome in mouse liver throughout the day, upon different feeding regimens, and in clock-disrupted mice. Our analyses revealed potential connections between lipid species within and between lipid classes. Remarkably, we uncovered diurnal oscillations in lipid accumulation in the nucleus and mitochondria. These oscillations exhibited opposite phases and readily responded to feeding time. Furthermore, we found that the circadian clock coordinates the phase relation between the organelles. In summary, our study provides temporal and spatial depiction of lipid organization and reveals the presence and coordination of diurnal rhythmicity in intracellular organelles.


Asunto(s)
Núcleo Celular/metabolismo , Ritmo Circadiano , Conducta Alimentaria , Metabolismo de los Lípidos , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Periodicidad , Animales , Ritmo Circadiano/genética , Genotipo , Masculino , Ratones Noqueados , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fenotipo , Factores de Tiempo
14.
World J Surg Oncol ; 22(1): 165, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918808

RESUMEN

BACKGROUND: The purpose of this study was to compare safety and efficacy outcomes between immediate breast reconstruction (IBR) and mastectomy alone in locally advanced breast cancer patients. METHODS: We conducted a comprehensive literature search of PUBMED, EMBASE, and Cochrane databases. The primary outcomes evaluated were overall survival, disease-free survival, and local recurrence. The secondary outcome was the incidence of surgical complications. All data were analyzed using Review Manager 5.3. RESULTS: Sixteen studies, involving 15,364 participants were included in this meta-analysis. Pooled data demonstrated that patients underwent IBR were more likely to experience surgical complications than those underwent mastectomy alone (HR: 3.96, 95%CI [1.07,14.67], p = 0.04). No significant difference was found in overall survival (HR: 0.94, 95%CI [0.73,1.20], p = 0.62), disease-free survival (HR: 1.03, 95%CI [0.83,1.27], p = 0.81), or breast cancer specific survival (HR: 0.93, 95%CI [0.71,1.21], p = 0.57) between IBR group and Non-IBR group. CONCLUSIONS: Our study demonstrates that IBR after mastectomy does not affect the overall survival and disease-free survival of locally advanced breast cancer patients. However, IBR brings with it a nonnegligible higher risk of complications and needs to be fully evaluated and carefully decided.


Asunto(s)
Neoplasias de la Mama , Mamoplastia , Mastectomía , Complicaciones Posoperatorias , Humanos , Femenino , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Mastectomía/efectos adversos , Mastectomía/métodos , Mamoplastia/métodos , Mamoplastia/efectos adversos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Pronóstico , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/epidemiología , Recurrencia Local de Neoplasia/etiología , Tasa de Supervivencia
15.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071756

RESUMEN

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Asunto(s)
Espectrometría de Masas , Lipidómica , Preparaciones Farmacéuticas , Proteómica , Congresos como Asunto
16.
J Lipid Res ; 64(4): 100350, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36849076

RESUMEN

Neuroinflammation, a major hallmark of Alzheimer's disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via ApoE-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here, we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes-expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.


Asunto(s)
Astrocitos , Oxiesteroles , Ratones , Animales , Humanos , Astrocitos/metabolismo , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Apolipoproteína E3/metabolismo , Oxiesteroles/metabolismo , Metabolismo de los Lípidos , Apolipoproteínas E/metabolismo , Colesterol/metabolismo
17.
J Biol Chem ; 298(10): 102401, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988648

RESUMEN

Hepatic steatosis associated with high-fat diet, obesity, and type 2 diabetes is thought to be the major driver of severe liver inflammation, fibrosis, and cirrhosis. Cytosolic acetyl CoA (AcCoA), a central metabolite and substrate for de novo lipogenesis (DNL), is produced from citrate by ATP-citrate lyase (ACLY) and from acetate through AcCoA synthase short chain family member 2 (ACSS2). However, the relative contributions of these two enzymes to hepatic AcCoA pools and DNL rates in response to high-fat feeding are unknown. We report here that hepatocyte-selective depletion of either ACSS2 or ACLY caused similar 50% decreases in liver AcCoA levels in obese mice, showing that both pathways contribute to the generation of this DNL substrate. Unexpectedly however, the hepatocyte ACLY depletion in obese mice paradoxically increased total DNL flux measured by D2O incorporation into palmitate, whereas in contrast, ACSS2 depletion had no effect. The increase in liver DNL upon ACLY depletion was associated with increased expression of nuclear sterol regulatory element-binding protein 1c and of its target DNL enzymes. This upregulated DNL enzyme expression explains the increased rate of palmitate synthesis in ACLY-depleted livers. Furthermore, this increased flux through DNL may also contribute to the observed depletion of AcCoA levels because of its increased conversion to malonyl CoA and palmitate. Together, these data indicate that in fat diet-fed obese mice, hepatic DNL is not limited by its immediate substrates AcCoA or malonyl CoA but rather by activities of DNL enzymes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Lipogénesis , Hígado , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Ratones , Acetilcoenzima A/metabolismo , Adenosina Trifosfato/metabolismo , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Malonil Coenzima A/metabolismo , Ratones Obesos , Palmitatos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
18.
J Hepatol ; 79(2): 378-393, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37061197

RESUMEN

BACKGROUND & AIMS: The prevalence of non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) is rising rapidly, yet its underlying mechanisms remain unclear. Herein, we aim to determine the role of hypoxia-inducible lipid droplet associated protein (HILPDA)/hypoxia-inducible gene 2 (HIG2), a selective inhibitor of intracellular lipolysis, in NASH-driven HCC. METHODS: The clinical significance of HILPDA was assessed in human NASH-driven HCC specimens by immunohistochemistry and transcriptomics analyses. The oncogenic effect of HILPDA was assessed in human HCC cells and in 3D epithelial spheroids upon exposure to free fatty acids and either normoxia or hypoxia. Lipidomics profiling of wild-type and HILPDA knockout HCC cells was assessed via shotgun and targeted approaches. Wild-type (Hilpdafl/fl) and hepatocyte-specific Hilpda knockout (HilpdaΔHep) mice were fed a Western diet and high sugar in drinking water while receiving carbon tetrachloride to induce NASH-driven HCC. RESULTS: In patients with NASH-driven HCC, upregulated HILPDA expression is strongly associated with poor survival. In oxygen-deprived and lipid-loaded culture conditions, HILPDA promotes viability of human hepatoma cells and growth of 3D epithelial spheroids. Lack of HILPDA triggered flux of polyunsaturated fatty acids to membrane phospholipids and of saturated fatty acids to ceramide synthesis, exacerbating lipid peroxidation and apoptosis in hypoxia. The apoptosis induced by HILPDA deficiency was reversed by pharmacological inhibition of ceramide synthesis. In our experimental mouse model of NASH-driven HCC, HilpdaΔHep exhibited reduced hepatic steatosis and tumorigenesis but increased oxidative stress in the liver. Single-cell analysis supports a dual role of hepatic HILPDA in protecting HCC cells and facilitating the establishment of a pro-tumorigenic immune microenvironment in NASH. CONCLUSIONS: Hepatic HILPDA is a pivotal oncometabolic factor in the NASH liver microenvironment and represents a potential novel therapeutic target. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH, chronic metabolic liver disease caused by buildup of fat, inflammation and damage in the liver) is emerging as the leading risk factor and the fastest growing cause of hepatocellular carcinoma (HCC), the most common form of liver cancer. While curative therapeutic options exist for HCC, it frequently presents at a late stage when such options are no longer effective and only systemic therapies are available. However, systemic therapies are still associated with poor efficacy and some side effects. In addition, no approved drugs are available for NASH. Therefore, understanding the underlying metabolic alterations occurring during NASH-driven HCC is key to identifying new cancer treatments that target the unique metabolic needs of cancer cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Hipoxia/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Microambiente Tumoral
19.
Ann Surg ; 278(6): 1009-1017, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37036095

RESUMEN

OBJECTIVE: To present comprehensive information on the clinicopathological, molecular, survival characteristics, and quality of life (QOL) after surgery for solid pseudopapillary neoplasm (SPN) of the pancreas in a large cohort after long-term follow-up. BACKGROUND: SPN is a rare tumor with an uncertain malignant potential, and solid information on long-term prognosis and QOL remains limited. METHODS: All hospitalized patients with SPNs who underwent surgery between 2001 and 2021 at the Peking Union Medical College Hospital were retrospectively reviewed. The clinicopathological characteristics of the patients were retrieved. A cross-sectional telephone questionnaire was administered to inquire about the QOL. Molecular analyses were performed using whole-exome sequencing. RESULTS: Exactly 454 patients with SPN were enrolled, of whom 18.5% were males and 81.5% were females. The mean patient age was 31 ± 12 years. In total, 61.3% of the patients had no symptoms. The size of the tumors was 5.38 ± 3.70 cm; 83.4% were solid cystic tumors, and 40.1% had calcifications. The proportions of local resection, distal pancreatectomy with or without splenectomy, and pancreaticoduodenectomy with or without pylorus preservation were 29.7%, 28.9% or 22.9%, and 11% or 6.8%, respectively. Over the years, there has been a significant shift from open to minimally invasive surgery. Among all surgical procedures, pylorus-preserving pancreaticoduodenectomy (PPPD) had the highest incidence of grade 2 to 4 complications (up to 32.3%), compared with 6.7% in distal pancreatectomy ( P < 0.001). Regarding histopathology, tissue invasion, perineural invasion, cancerous microvascular emboli, lymph node metastasis, and distant metastasis were present in 16.5%, 2.2%, 0.7%, 2.0%, and 3.1% of patients, respectively. Sixty patients were lost to follow-up. Sixteen of the 390 patients who underwent resection (4.1%) experienced local recurrence or distant metastasis after surgery. In total, 361 patients responded to the telephone survey. Nearly 80% of patients claimed their QOL was not significantly affected after surgery; however, the remaining 20% complained of lower QOL during 3 to 6 years of follow-up after surgery. No clinicopathological factor could reliably predict clinical recurrence or metastasis after resection. A total of 28 driver genes were detected with mutations in at least 2 tumor samples and the top 3 frequently mutated genes were CTNNB1 , ATRNL1 , and MUC16 . CONCLUSIONS: This study presented the largest cohort of patients with SPN after surgery from a single center and reported the QOL of these patients. SPN is associated with extremely favorable long-term survival, even in patients with metastasis, and most patients have a good QOL after surgery.


Asunto(s)
Neoplasias Pancreáticas , Calidad de Vida , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Estudios Retrospectivos , Resultado del Tratamiento , Estudios Transversales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/diagnóstico , Páncreas/cirugía , Pancreatectomía/métodos , Recurrencia Local de Neoplasia/cirugía
20.
Mass Spectrom Rev ; 41(1): 15-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997818

RESUMEN

Lipid research is attracting more and more attention as various key roles and novel biological functions of lipids have been demonstrated and discovered in the organism. Mass spectrometry (MS)-based lipidomics approaches are the most powerful and effective tools for analysis of cellular lipidomes with very high sensitivity and specificity. However, the artifacts generated from in-source fragmentation are always present in all kinds of ion sources, even soft ionization techniques (i.e., electrospray ionization and matrix-assisted laser desorption/ionization [MALDI]). These artifacts can cause many problems for lipidomics, especially when the fragment ions correspond to/are isomeric species of other endogenous lipid species in complex biological samples. These commonly observed artifacts could lead to misannotation, false identification, and consequently, incorrect attribution of phenotypes, and will have negative impact on any MS-based lipidomics research including but not limited to biomarker discovery, drug development, etc. Liquid chromatography-MS, shotgun lipidomics, and MALDI-MS imaging are three representative lipidomics approaches in which ion source-generated artifacts are all manifested and are comprehensively summarized in this article. The strategies on how to avoid/reduce the artifacts of in-source fragmentation on lipidomics analysis are also discussed in detail. We believe that with the recognition and avoidance of ion source-generated artifacts, MS-based lipidomics approaches will provide better accuracy on comprehensive analysis of biological samples and will make greater contribution to the research on metabolism and translational/precision medicine (collectively termed functional lipidomics). © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Asunto(s)
Artefactos , Lipidómica , Cromatografía Liquida , Iones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA