Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 13(1): 47, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23688022

RESUMEN

BACKGROUND: Cranial radiation therapy has been used for the treatment of primary and metastatic brain tumors. A prominent feature of brain injury induced by the radiation therapy is hippocampal dysfunction, characterized by a decline in memory. Cdk5 plays an important role in memory formation. Abnormal Cdk5 activity is associated with neuronal apoptosis induced by neurotoxic stimuli. However, the roles of Cdk5 in hippocampal apoptosis in response to X-ray irradiation have not been explored. METHODS: The expression of Cdk5 activators, p35 and p25, in hippocampal neurons was tested in both in vivo animal and in vitro couture after X-ray irradiation. RESULTS: After X-ray irradiation at 20 Gy and 30 Gy in rats, the number of hippocampal neuronal pyknosis was increased, but the number of hippocampal neuron was decreased, in the hippocampal CA1 region of rats. In these animals undergone with X-ray irradiation, the expression of p35 was significantly down-regulated, but it was up-regulated in p25. These opposite expressions were also shown in the primary cultured hippocampal neurons with 30 Gy irradiation. The apoptosis induced by X-ray irradiation were significantly prevented by the pretreatment of Cdk5 inhibitor, roscovitine, in both in vivo and in vitro settings. CONCLUSIONS: X-ray irradiation resulted in a hippocampal neuronal apoptosis through up-regulation of p25, the Cdk5 activator. Hyperactivity of Cdk5 was involved in the pathogenesis of X-ray irradiation-induced hippocampal neuronal apoptosis. Blockade of Cdk5 signal pathway effectively protected neurons from the irradiation-induced brain injury.

2.
Nan Fang Yi Ke Da Xue Xue Bao ; 29(3): 405-7, 2009 Mar.
Artículo en Zh | MEDLINE | ID: mdl-19304511

RESUMEN

OBJECTIVE: To study the expressions of p35 and p25 and Cdk5 kinase activity in cultured rats hippocampal neurons following X-ray exposure to provide experimental evidence for prevention and treatment of radiation encephalopathy. METHODS: The hippocampal neurons cultured for 12 days were subjected to a single-dose X-ray exposure of 30 Gy. Western blotting was used to detect the p35 and p25 protein levels, and the effect of pretreatment with roscovitine, a Cdk5 inhibitor, on the apoptosis of the hippocampal neurons following the exposure was examined with 4',6-diamidino-2-phenylindole (DAPI) staining. RESULTS: The protein level of p35 increased significantly 3.5 and 4 h after the irradiation by 1.51-/+0.13 and 1.45-/+0.14 folds in comparison with the control level, respectively (P<0.01), and the p25 level increased significantly 6 h after irradiation by 1.62-/+0.28 folds (P<0.05). Nuclear condensation occurred in (24.8-/+3.97)% of the neurons 24 h after 30 Gy X-ray exposure, a rate significantly higher than that in the nonexposed cells [(1.82-/+1.08)%, P<0.01) and that in roscovitine-pretreated neurons [(7.74-/+2.27)%, P<0.01). CONCLUSION: X-ray exposure activates Cdk5 by increasing the p35 and p25 expressions in rat hippocampal neurons, and inhibition of Cdk5 activity with roscovitine can significantly protect the neurons from apoptosis.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Neuronas/efectos de la radiación , Fosfotransferasas/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/genética , Femenino , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Masculino , Neuronas/citología , Fosfotransferasas/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA