Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 177(3): 722-736.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955890

RESUMEN

Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.


Asunto(s)
Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Receptor de Insulina/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor C1 de la Célula Huésped/antagonistas & inhibidores , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor de Insulina/química , Transducción de Señal/efectos de los fármacos
2.
Cell ; 158(2): 368-382, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036633

RESUMEN

Adenomatous polyposis coli (APC) is a microtubule plus-end scaffolding protein important in biology and disease. APC is implicated in RNA localization, although the mechanisms and functional significance remain unclear. We show APC is an RNA-binding protein and identify an RNA interactome by HITS-CLIP. Targets were highly enriched for APC-related functions, including microtubule organization, cell motility, cancer, and neurologic disease. Among the targets is ß2B-tubulin, known to be required in human neuron and axon migration. We show ß2B-tubulin is synthesized in axons and localizes preferentially to dynamic microtubules in the growth cone periphery. APC binds the ß2B-tubulin 3' UTR; experiments interfering with this interaction reduced ß2B-tubulin mRNA axonal localization and expression, depleted dynamic microtubules and the growth cone periphery, and impaired neuron migration. These results identify APC as a platform binding functionally related protein and RNA networks, and suggest a self-organizing model for the microtubule to localize synthesis of its own subunits.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Microtúbulos/metabolismo , Neurogénesis , Proteínas de Unión al ARN/metabolismo , Animales , Axones/metabolismo , Secuencia de Bases , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Movimiento Celular , Ganglios Espinales/citología , Estudio de Asociación del Genoma Completo , Conos de Crecimiento/metabolismo , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Mapas de Interacción de Proteínas , ARN Mensajero/metabolismo , Ratas , Alineación de Secuencia , Tubulina (Proteína)/metabolismo
3.
Arch Psychiatr Nurs ; 30(4): 492-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27455924

RESUMEN

BACKGROUND: No instrument exists to measure parent beliefs about early social-emotional development, which is foundational for child outcomes. We developed and tested an instrument to measure parent beliefs. METHODS: Positive parenting was defined from the literature and 84 items were developed based on the theory of planned behavior (TPB). The instrument was tested with mothers (N=200) from the United States. RESULTS: Data support our initial supposition of five factors based upon the TPB, which accounted for 65.5% of the total variance. CONCLUSION: The instrument demonstrates strong initial psychometric properties and is ready for further testing.


Asunto(s)
Desarrollo Infantil , Emociones , Madres/psicología , Padres/psicología , Encuestas y Cuestionarios , Preescolar , Humanos , Lactante , Psicometría/estadística & datos numéricos , Reproducibilidad de los Resultados , Apoyo Social , Estados Unidos
4.
J Neurosci ; 34(1): 66-78, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24381269

RESUMEN

Developing axons can locally synthesize proteins, with roles in axon growth, guidance, and regeneration, but the mechanisms that regulate axonal mRNA translation are not well understood. MicroRNAs (miRNAs) are important regulators of translation but have still been little characterized in developing axons. Here we study mouse dorsal root ganglion (DRG) axons and show that their extension is impaired by conditional deficiency of the miRNA-processing enzyme Dicer in vitro and in vivo. A screen for axonal localization identifies a specific set of miRNAs preferentially enriched within the developing axon. High axonal expression and preferential localization were observed for miR-132, a miRNA previously known for roles in dendrites and dysregulation in major neurologic diseases. miR-132 knockdown reduced extension of cultured DRG axons, whereas overexpression increased extension. Mechanistically, miR-132 regulated the mRNA for the Ras GTPase activator Rasa1, a novel target in neuronal function. Moreover, miR-132 regulation of Rasa1 translation was seen in severed axons, demonstrating miRNA function locally within the axon. miR-132 expression in DRGs peaked in the period of maximum axon growth in vivo, consistent with its effect on axon growth, and suggesting a role as a developmental timer. Together, these findings identify miR-132 as a positive regulator of developing axon extension, acting through repression of Rasa1 mRNA, in a mechanism that operates locally within the axon.


Asunto(s)
Axones/fisiología , Ganglios Espinales/crecimiento & desarrollo , MicroARNs/fisiología , ARN Mensajero/fisiología , Proteína Activadora de GTPasa p120/fisiología , Animales , Axotomía , Células Cultivadas , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
5.
Development ; 138(22): 4887-98, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22028026

RESUMEN

Sensory axons must develop appropriate connections with both central and peripheral targets. Whereas the peripheral cues have provided a classic model for neuron survival and guidance, less is known about the central cues or the coordination of central and peripheral connectivity. Here we find that type III Nrg1, in addition to its known effect on neuron survival, regulates axon pathfinding. In type III Nrg1(-/-) mice, death of TrkA(+) nociceptive/thermoreceptive neurons was increased, and could be rescued by Bax elimination. In the Bax and type III Nrg1 double mutants, axon pathfinding abnormalities were seen for TrkA(+) neurons both in cutaneous peripheral targets and in spinal cord central targets. Axon guidance phenotypes in the spinal cord included penetration of axons into ventral regions from which they would normally be repelled by Sema3A. Accordingly, sensory neurons from type III Nrg1(-/-) mice were unresponsive to the repellent effects of Sema3A in vitro, which might account, at least in part, for the central projection phenotype, and demonstrates an effect of type III Nrg1 on guidance cue responsiveness in neurons. Moreover, stimulation of type III Nrg1 back-signaling in cultured sensory neurons was found to regulate axonal levels of the Sema3A receptor neuropilin 1. These results reveal a molecular mechanism whereby type III Nrg1 signaling can regulate the responsiveness of neurons to a guidance cue, and show that type III Nrg1 is required for normal sensory neuron survival and axon pathfinding in both central and peripheral targets.


Asunto(s)
Axones/fisiología , Neurregulina-1/fisiología , Nervios Periféricos/embriología , Células Receptoras Sensoriales/fisiología , Médula Espinal/embriología , Animales , Axones/metabolismo , Muerte Celular/genética , Muerte Celular/fisiología , Células Cultivadas , Embrión de Mamíferos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Ratones , Ratones Noqueados , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Neurregulina-1/genética , Neurregulina-1/metabolismo , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Organogénesis/genética , Nervios Periféricos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Células Receptoras Sensoriales/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiología
6.
J Neurosci ; 30(27): 9199-208, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20610754

RESUMEN

Neuregulin 1 (NRG1) signaling is critical to various aspects of neuronal development and function. Among different NRG1 isoforms, the type III isoforms of NRG1 are unique in their ability to signal via the intracellular domain after gamma-secretase-dependent intramembranous processing. However, the functional consequences of type III NRG1 signaling via its intracellular domain are mostly unknown. In this study, we have identified mutations within type III NRG1 that disrupt intramembranous proteolytic processing and abolish intracellular domain signaling. In particular, substitutions at valine 321, previously linked to schizophrenia risks, result in NRG1 proteins that fail to undergo gamma-secretase-mediated nuclear localization and transcriptional activation. Using processing-defective mutants of type III NRG1, we demonstrate that the intracellular domain signaling is specifically required for NRG1 regulation of the growth and branching of cortical dendrites but not axons. Consistent with the role of type III NRG1 signaling via the intracellular domain in the initial patterning of cortical dendrites, our findings from pharmacological and genetic studies indicate that type III NRG1 functions in dendritic development independent of ERBB kinase activity. Together, these results support the proposal that aberrant intramembranous processing and defective signaling via the intracellular domain of type III NRG1 impair a subset of NRG1 functions in cortical development and contribute to abnormal neuroconnectivity implicated in schizophrenia.


Asunto(s)
Corteza Cerebral/citología , Neurregulina-1/metabolismo , Neuronas/metabolismo , Valina/metabolismo , Alanina/genética , Animales , Axones/metabolismo , Células Cultivadas , Corteza Cerebral/embriología , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Receptores ErbB/deficiencia , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Indoles , Leucina/genética , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Neurregulina-1/deficiencia , Neuronas/citología , Receptor ErbB-4 , Estadísticas no Paramétricas , Transfección/métodos , Valina/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
7.
J Neurosci ; 28(37): 9111-6, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18784291

RESUMEN

Both the neuregulin 1 (Nrg1) and alpha7 nicotinic acetylcholine receptor (alpha7*nAChRs) genes have been linked to schizophrenia and associated sensory-motor gating deficits. The prominence of nicotine addiction in schizophrenic patients is reflected in the normalization of gating deficits by nicotine self-administration. To assess the role of presynaptic type III Nrg1 at hippocampal-accumbens synapses, an important relay in sensory-motor gating, we developed a specialized preparation of chimeric circuits in vitro. Synaptic relays from Nrg1(tm1Lwr) heterozygote ventral hippocampal slices to wild-type (WT) nucleus accumbens neurons (1) lack a sustained, alpha7*nAChRs-mediated phase of synaptic potentiation seen in comparable WT/WT circuits and (2) are deficient in targeting alpha7*nAChRs to presynaptic sites. Thus, selective alteration of the level of presynaptic type III Nrg1 dramatically affects the modulation of glutamatergic transmission at ventral hippocampal to nucleus accumbens synapses.


Asunto(s)
Hipocampo/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Terminales Presinápticos/metabolismo , Receptores Nicotínicos/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Bungarotoxinas/farmacología , Cicloheximida/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Ácido Glutámico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Ratones , Ratones Noqueados , Neurregulinas , Núcleo Accumbens/fisiología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp/métodos , Inhibidores de la Síntesis de la Proteína/farmacología , Transmisión Sináptica/fisiología , Factores de Tiempo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7 , Ácido gamma-Aminobutírico/metabolismo
9.
J Gen Physiol ; 131(6): i4, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18504310

RESUMEN

Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

10.
J Cell Biol ; 181(3): 511-21, 2008 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-18458158

RESUMEN

Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.


Asunto(s)
Axones/metabolismo , Neurregulina-1/metabolismo , Proteínas Oncogénicas v-erbB/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Presinapticos/metabolismo , Transducción de Señal/fisiología , Animales , Axones/ultraestructura , Células Cultivadas , Embrión de Mamíferos/anatomía & histología , Endocitosis/fisiología , Ganglios Espinales/citología , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Neurregulina-1/genética , Proteínas Oncogénicas v-erbB/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Nicotínicos/genética , Receptores Presinapticos/genética , Receptor Nicotínico de Acetilcolina alfa 7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA