Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 131(20): 6888-9, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19415891

RESUMEN

We report evidence that paramagnetism in CdSe QDs can be induced via manipulation of the surface chemistry. Using SQUID magnetometry and X-ray absorption spectroscopy, we demonstrate that the paramagnetic behavior of the CdSe QDs can be varied by changing the ligand end-group functionality of the passivating layer. Contrary to previous reports, no evidence for ferromagnetism was observed. The results suggest that the paramagnetism is induced via pi back-bonding between Cd 4d orbtials and ligands with empty pi* orbitals.

2.
Phys Rev Lett ; 98(14): 146803, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17501301

RESUMEN

X-ray absorption spectroscopy has been used to characterize the evolution in the conduction band (CB) density of states of CdSe quantum dots (QDs) as a function of particle size. We have unambiguously witnessed the CdSe QD CB minimum (CBM) shift to higher energy with decreasing particle size, consistent with quantum confinement effects, and have directly compared our results with recent theoretical calculations. At the smallest particle size, evidence for a pinning of the CBM is presented. Our observations can be explained by considering a size-dependent change in the angular-momentum-resolved states at the CBM.

3.
J Am Chem Soc ; 124(38): 11495-502, 2002 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-12236764

RESUMEN

In this study, we report structural, vibrational, and magnetic data providing evidence of random ion displacement in the core of CdSe quantum dots on the Cd(2+) sites by Co(2+) ions (between x = 0 and 0.30). Structural evidence for core doping is obtained by analyzing the powder X-ray diffraction (pXRD), data which exhibits a linear lattice compression with increasing Co(2+) concentration, in accord with Vegard's law. Correlated with the pXRD shift, a hardening of the CdSe longitudinal optical phonon mode and a new local vibrational mode are observed which track Co(2+) doping concentration. Consistent with the observed core doping, superconducting quantum interference device (SQUID) measurements indicate a surprising increase for the onset of spin glass behavior by an order of magnitude over bulk Co:CdSe. Correlation of SQUID results, pXRD, and Raman measurements suggests that the observed enhancement of magnetic superexchange between Co(2+) dopant ions in this confined system arises from changes in the nature of coupling in size-restricted materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA