Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Pathog ; 20(7): e1012370, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976748

RESUMEN

Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.


Asunto(s)
Encéfalo , Ciervos , Proteínas PrPSc , Enfermedad Debilitante Crónica , Animales , Ratones , Enfermedad Debilitante Crónica/transmisión , Encéfalo/metabolismo , Encéfalo/patología , Proteínas PrPSc/metabolismo , Conformación Proteica , Priones/metabolismo , Priones/patogenicidad , Enfermedades por Prión/transmisión , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Ratones Transgénicos
2.
PLoS Pathog ; 20(7): e1012350, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950080

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/transmisión , Enfermedad Debilitante Crónica/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Priónicas/metabolismo , Proteínas Priónicas/genética , Ratones Transgénicos , Noruega , Marcación de Gen , Priones/metabolismo , Priones/genética , Priones/patogenicidad
3.
Proc Natl Acad Sci U S A ; 120(15): e2221060120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014866

RESUMEN

Prions are proteinaceous infectious particles that replicate by structural conversion of the host-encoded cellular prion protein (PrPC), causing fatal neurodegenerative diseases in mammals. Species-specific amino acid substitutions (AAS) arising from single nucleotide polymorphisms within the prion protein gene (Prnp) modulate prion disease pathogenesis, and, in several instances, reduce susceptibility of homo- or heterozygous AAS carriers to prion infection. However, a mechanistic understanding of their protective effects against clinical disease is missing. We generated gene-targeted mouse infection models of chronic wasting disease (CWD), a highly contagious prion disease of cervids. These mice express wild-type deer or PrPC harboring the S138N substitution homo- or heterozygously, a polymorphism found exclusively in reindeer (Rangifer tarandus spp.) and fallow deer (Dama dama). The wild-type deer PrP-expressing model recapitulated CWD pathogenesis including fecal shedding. Encoding at least one 138N allele prevented clinical CWD, accumulation of protease-resistant PrP (PrPres) and abnormal PrP deposits in the brain tissue. However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding. 138N-PrPC was less efficiently converted to PrPres in vitro than wild-type deer (138SS) PrPC. Heterozygous coexpression of wild-type deer and 138N-PrPC resulted in dominant-negative inhibition and progressively diminished prion conversion over serial rounds of protein misfolding cyclic amplification. Our study indicates that heterozygosity at a polymorphic Prnp codon can confer the highest protection against clinical CWD and highlights the potential role of subclinical carriers in CWD transmission.


Asunto(s)
Ciervos , Enfermedades por Prión , Priones , Reno , Enfermedad Debilitante Crónica , Ratones , Animales , Priones/metabolismo , Proteínas Priónicas/genética , Ciervos/genética , Enfermedad Debilitante Crónica/genética , Ratones Transgénicos , Enfermedades por Prión/genética
4.
J Biol Chem ; 299(2): 102883, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623732

RESUMEN

Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.


Asunto(s)
Hipercolesterolemia , Proteínas de Unión al GTP Monoméricas , Enfermedades por Prión , Animales , Ratones , Colesterol/metabolismo , Activación Enzimática , Retroalimentación , Hipercolesterolemia/etiología , Hipercolesterolemia/fisiopatología , Lipoproteínas LDL/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuronas/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo
5.
Cell Mol Life Sci ; 80(6): 139, 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149826

RESUMEN

Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AßO), a main neurotoxic species mediating AD pathology. The interaction of AßO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AßO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AßO with PrPC and reduces AßO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AßO levels and Aß plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AßO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AßO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.


Asunto(s)
Enfermedad de Alzheimer , Aptámeros de Péptidos , Proteínas PrPC , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Modelos Animales de Enfermedad
6.
PLoS Pathog ; 17(7): e1009795, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310662

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting cervids. Polymorphisms in the prion protein gene can result in extended survival of CWD-infected animals. However, the impact of polymorphisms on cellular prion protein (PrPC) and prion properties is less understood. Previously, we characterized the effects of a polymorphism at codon 116 (A>G) of the white-tailed deer (WTD) prion protein and determined that it destabilizes PrPC structure. Comparing CWD isolates from WTD expressing homozygous wild-type (116AA) or heterozygous (116AG) PrP, we found that 116AG-prions were conformationally less stable, more sensitive to proteases, with lower seeding activity in cell-free conversion and reduced infectivity. Here, we aimed to understand CWD strain emergence and adaptation. We show that the WTD-116AG isolate contains two different prion strains, distinguished by their host range, biochemical properties, and pathogenesis from WTD-116AA prions (Wisc-1). Serial passages of WTD-116AG prions in tg(CerPrP)1536+/+ mice overexpressing wild-type deer-PrPC revealed two populations of mice with short and long incubation periods, respectively, and remarkably prolonged clinical phase upon inoculation with WTD-116AG prions. Inoculation of serially diluted brain homogenates confirmed the presence of two strains in the 116AG isolate with distinct pathology in the brain. Interestingly, deglycosylation revealed proteinase K-resistant fragments with different electrophoretic mobility in both tg(CerPrP)1536+/+ mice and Syrian golden hamsters infected with WTD-116AG. Infection of tg60 mice expressing deer S96-PrP with 116AG, but not Wisc-1 prions induced clinical disease. On the contrary, bank voles resisted 116AG prions, but not Wisc-1 infection. Our data indicate that two strains co-existed in the WTD-116AG isolate, expanding the variety of CWD prion strains. We argue that the 116AG isolate does not contain Wisc-1 prions, indicating that the presence of 116G-PrPC diverted 116A-PrPC from adopting a Wisc-1 structure. This can have important implications for their possible distinct capacities to cross species barriers into both cervids and non-cervids.


Asunto(s)
Proteínas Priónicas/genética , Enfermedad Debilitante Crónica/genética , Animales , Arvicolinae , Cricetinae , Ciervos , Mesocricetus , Ratones , Polimorfismo de Nucleótido Simple , Enfermedad Debilitante Crónica/transmisión
7.
Acta Neuropathol ; 144(4): 767-784, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35996016

RESUMEN

Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Western Blotting , Bovinos , Ciervos/metabolismo , Humanos , Ratones , Proteínas Priónicas/metabolismo , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/patología
8.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668798

RESUMEN

Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.


Asunto(s)
Ciervos/genética , Polimorfismo Genético , Proteínas Priónicas/genética , Enfermedad Debilitante Crónica/patología , Secuencia de Aminoácidos , Animales , Proteínas Priónicas/química , Zoonosis/patología , Zoonosis/transmisión
9.
J Neurochem ; 152(6): 727-740, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31553058

RESUMEN

Chronic wasting disease (CWD) is a prion disease of free-ranging and farmed cervids that is highly contagious because of extensive prion shedding and prion persistence in the environment. Previously, cellulose ether compounds (CEs) have been shown to significantly extend the survival of mice inoculated with mouse-adapted prion strains. In this study, we used CEs, TC-5RW, and 60SH-50, in vitro and in vivo to assess their efficacy to interfere with CWD prion propagation. In vitro, CEs inhibited CWD prion amplification in a dose-dependent manner. Transgenic mice over-expressing elk PrPC (tgElk) were injected subcutaneously with a single dose of either of the CEs, followed by intracerebral inoculation with different CWD isolates from white tailed deer, mule deer, or elk. All treated groups showed a prolonged survival of up to more than 30 % when compared to the control group regardless of the CWD isolate used for infection. The extended survival in the treated groups correlated with reduced proteinase K resistance of prions. Remarkably, passage of brain homogenates from treated or untreated animals in tgElk mice resulted in a prolonged life span of mice inoculated with homogenates from CE-treated mice (of + 17%) even in the absence of further treatment. Besides the delayed disease onset upon passage in TgElk mice, the reduced proteinase K resistance was maintained but less pronounced. Therefore, these compounds can be very useful in limiting the spread of CWD in captive and wild-ranging cervids.


Asunto(s)
Celulosa/administración & dosificación , Éter/administración & dosificación , Péptido Hidrolasas/metabolismo , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/prevención & control , Animales , Química Encefálica , Ciervos , Expresión Génica , Ratones , Ratones Transgénicos , Proteínas PrPSc/química , Proteínas Priónicas/química , Proteínas Priónicas/genética , Priones/administración & dosificación , Priones/efectos de los fármacos , Conformación Proteica , Proteínas Recombinantes
10.
PLoS Pathog ; 13(8): e1006553, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28800624

RESUMEN

Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC). We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD.


Asunto(s)
Polimorfismo de Nucleótido Simple , Proteínas Priónicas/genética , Enfermedad Debilitante Crónica/genética , Animales , Western Blotting , Ciervos , Modelos Animales de Enfermedad , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Reacción en Cadena de la Polimerasa , Conformación Proteica
11.
J Biol Chem ; 292(40): 16688-16696, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28821618

RESUMEN

Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrPSc). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrPSc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas PrPSc/metabolismo , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Animales , Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Humanos , Ratones , Ratones Transgénicos , Proteínas PrPSc/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología
12.
J Infect Dis ; 209(7): 1144-8, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24265435

RESUMEN

In prion diseases, a major issue in therapeutic research is the variability of the effect between strains. Stimulated by the report of an antiprion effect in a scrapie model and by ongoing international clinical trials using doxycycline, we studied the efficacy of cyclines against the propagation of human prions. First, we successfully propagated various Creutzfeldt-Jakob disease (CJD) isolates (sporadic, variant, and iatrogenic CJD) in neuronal cultures expressing the human prion protein. Then, we found that doxycycline was the most effective compound, with important variations between isolates. Isolates from sporadic CJD, the most common form of prion disease, showed the highest sensitivity.


Asunto(s)
Doxiciclina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Priones/antagonistas & inhibidores , Priones/efectos de los fármacos , Células Cultivadas , Doxiciclina/metabolismo , Doxiciclina/uso terapéutico , Humanos
13.
J Virol ; 87(5): 2535-48, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23255799

RESUMEN

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.


Asunto(s)
Astrocitos/patología , Neuronas/patología , Priones/fisiología , Scrapie/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Técnicas de Cultivo de Célula , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Scrapie/metabolismo
15.
Commun Biol ; 6(1): 1162, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964018

RESUMEN

Infectious prions consist of PrPSc, a misfolded, aggregation-prone isoform of the host's prion protein. PrPSc assemblies encode distinct biochemical and biological properties. They harbor a specific profile of PrPSc species, from small oligomers to fibrils in different ratios, where the highest infectivity aligns with oligomeric particles. To investigate the impact of PrPSc aggregate complexity on prion propagation, biochemical properties, and disease pathogenesis, we fractionated elk prions by sedimentation velocity centrifugation, followed by sub-passages of individual fractions in cervidized mice. Upon first passage, different fractions generated PrPSc with distinct biochemical, biophysical, and neuropathological profiles. Notably, low or high molecular weight PrPSc aggregates caused different clinical signs of hyperexcitability or lethargy, respectively, which were retained over passage, whereas other properties converged. Our findings suggest that PrPSc quaternary structure determines an initial selection of a specific replication environment, resulting in transmissible features that are independent of PrPSc biochemical and biophysical properties.


Asunto(s)
Enfermedades por Prión , Priones , Ratones , Animales , Enfermedades por Prión/etiología , Enfermedades por Prión/patología , Priones/metabolismo , Proteínas Priónicas
16.
Acta Neuropathol Commun ; 9(1): 58, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795005

RESUMEN

Prion diseases are fatal, infectious, and incurable neurodegenerative disorders caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform (PrPSc). In humans, there are sporadic, genetic and infectious etiologies, with sporadic Creutzfeldt-Jakob disease (sCJD) being the most common form. Currently, no treatment is available for prion diseases. Cellular cholesterol is known to impact prion conversion, which in turn results in an accumulation of cholesterol in prion-infected neurons. The major elimination of brain cholesterol is achieved by the brain specific enzyme, cholesterol 24-hydroxylase (CYP46A1). Cyp46A1 converts cholesterol into 24(S)-hydroxycholesterol, a membrane-permeable molecule that exits the brain. We have demonstrated for the first time that Cyp46A1 levels are reduced in the brains of prion-infected mice at advanced disease stage, in prion-infected neuronal cells and in post-mortem brains of sCJD patients. We have employed the Cyp46A1 activator efavirenz (EFV) for treatment of prion-infected neuronal cells and mice. EFV is an FDA approved anti-HIV medication effectively crossing the blood brain barrier and has been used for decades to chronically treat HIV patients. EFV significantly mitigated PrPSc propagation in prion-infected cells while preserving physiological PrPC and lipid raft integrity. Notably, oral administration of EFV treatment chronically at very low dosage starting weeks to months after intracerebral prion inoculation of mice significantly prolonged the lifespan of animals. In summary, our results suggest that Cyp46A1 as a novel therapeutic target and that its activation through repurposing the anti-retroviral medication EFV might be valuable treatment approach for prion diseases.


Asunto(s)
Alquinos/farmacología , Benzoxazinas/farmacología , Colesterol 24-Hidroxilasa/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Ciclopropanos/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Proteínas PrPSc/efectos de los fármacos , Administración Oral , Animales , Colesterol 24-Hidroxilasa/efectos de los fármacos , Reposicionamiento de Medicamentos , Humanos , Microdominios de Membrana/metabolismo , Ratones , Proteínas PrPC/efectos de los fármacos , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo
17.
J Vis Exp ; (127)2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28994814

RESUMEN

The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins. Thus, amyloid formation can be detected in real time. We attempted to develop a reliable non-invasive screening test to detect chronic wasting disease (CWD) prions in fecal extract. Here, we have specifically adapted the RT-QuIC technique to reveal PrPSc seeding activity in feces of CWD infected cervids. Initially, the seeding activity of the fecal extracts we prepared was relatively low in RT-QuIC, possibly due to potential assay inhibitors in the fecal material. To improve seeding activity of feces extracts and remove potential assay inhibitors, we homogenized the fecal samples in a buffer containing detergents and protease inhibitors. We also submitted the samples to different methodologies to concentrate PrPSc on the basis of protein precipitation using sodium phosphotungstic acid, and centrifugal force. Finally, the feces extracts were tested by optimized RT-QuIC which included substrate replacement in the protocol to improve the sensitivity of detection. Thus, we established a protocol for sensitive detection of CWD prion seeding activity in feces of pre-clinical and clinical cervids by RT-QuIC, which can be a practical tool for non-invasive CWD diagnosis.


Asunto(s)
Bioensayo/métodos , Heces/química , Priones/química , Enfermedad Debilitante Crónica/diagnóstico , Animales , Humanos , Priones/análisis
18.
PLoS One ; 11(11): e0166187, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829062

RESUMEN

Chronic wasting disease (CWD) is a fatal prion disease of wild and captive cervids in North America. Prions are infectious agents composed of a misfolded version of a host-encoded protein, termed PrPSc. Infected cervids excrete and secrete prions, contributing to lateral transmission. Geographical distribution is expanding and case numbers in wild cervids are increasing. Recently, the first European cases of CWD have been reported in a wild reindeer and two moose from Norway. Therefore, methods to detect the infection early in the incubation time using easily available samples are desirable to facilitate effective disease management. We have adapted the real-time quaking induced conversion (RT-QuIC) assay, a sensitive in vitro prion amplification method, for pre-clinical detection of prion seeding activity in elk feces. Testing fecal samples from orally inoculated elk taken at various time points post infection revealed early shedding and detectable prion seeding activity throughout the disease course. Early shedding was also found in two elk encoding a PrP genotype associated with reduced susceptibility for CWD. In summary, we suggest that detection of CWD prions in feces by RT-QuIC may become a useful tool to support CWD surveillance in wild and captive cervids. The finding of early shedding independent of the elk's prion protein genotype raises the question whether prolonged survival is beneficial, considering accumulation of environmental prions and its contribution to CWD transmission upon extended duration of shedding.


Asunto(s)
Ciervos , Heces/química , Priones/análisis , Enfermedad Debilitante Crónica/diagnóstico , Animales , Interfaces Cerebro-Computador , Proteínas Recombinantes
19.
Viruses ; 6(11): 4505-35, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25419621

RESUMEN

Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer's disease (AD): whereas amyloid ß peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Colesterol/metabolismo , Enfermedades por Prión/fisiopatología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Humanos , Enfermedades por Prión/patología , Priones/metabolismo , Pliegue de Proteína
20.
Nat Med ; 19(9): 1124-31, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955714

RESUMEN

α-secretase-mediated cleavage of amyloid precursor protein (APP) precludes formation of neurotoxic amyloid-ß (Aß) peptides, and α-cleavage of cellular prion protein (PrP(C)) prevents its conversion into misfolded, pathogenic prions (PrP(Sc)). The mechanisms leading to decreased α-secretase activity in Alzheimer's and prion disease remain unclear. Here, we find that tumor necrosis factor-α-converting enzyme (TACE)-mediated α-secretase activity is impaired at the surface of neurons infected with PrP(Sc) or isolated from APP-transgenic mice with amyloid pathology. 3-phosphoinositide-dependent kinase-1 (PDK1) activity is increased in neurons infected with prions or affected by Aß deposition and in the brains of individuals with Alzheimer's disease. PDK1 induces phosphorylation and caveolin-1-mediated internalization of TACE. This dysregulation of TACE increases PrP(Sc) and Aß accumulation and reduces shedding of TNF-α receptor type 1 (TNFR1). Inhibition of PDK1 promotes localization of TACE to the plasma membrane, restores TACE-dependent α-secretase activity and cleavage of APP, PrP(C) and TNFR1, and attenuates PrP(Sc)- and Aß-induced neurotoxicity. In mice, inhibition or siRNA-mediated silencing of PDK1 extends survival and reduces motor impairment following PrP(Sc) infection and in APP-transgenic mice reduces Alzheimer's disease-like pathology and memory impairment.


Asunto(s)
Proteínas ADAM/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Caveolina 1/metabolismo , Supervivencia Celular , Células Cultivadas , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Priones/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Interferencia de ARN , ARN Interferente Pequeño , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA