Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566388

RESUMEN

The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients' overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.


Asunto(s)
Calidad de Vida , Thymelaeaceae , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Madera
2.
J Cell Physiol ; 234(10): 16703-16723, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30912142

RESUMEN

Chronic obstructive pulmonary disease accounts as the leading cause of mortality worldwide prominently affected by genetic and environmental factors. The disease is characterized by persistent coughing, breathlessness airways inflammation followed by a decrease in forced expiratory volume1 and exacerbations, which affect the quality of life. Determination of genetic, epigenetic, and oxidant biomarkers to evaluate the progression of disease has proved complicated and challenging. Approaches including exome sequencing, genome-wide association studies, linkage studies, and inheritance and segregation studies played a crucial role in the identification of genes, their pathways and variation in genes. This review highlights multiple approaches for biomarker and gene identification, which can be used for differential diagnosis along with the genome editing tools to study genes associated with the development of disease and models their function. Further, we have discussed the approaches to rectify the abnormal gene functioning of respiratory tissues and various novel gene editing techniques like Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9).


Asunto(s)
Terapia Genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/terapia , Biomarcadores , Edición Génica , Humanos
3.
Curr Diab Rep ; 19(5): 22, 2019 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-30905013

RESUMEN

PURPOSE OF REVIEW: Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D. RECENT FINDINGS: Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results. To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Humanos , Inmunoterapia , Insulina , Ratones Endogámicos NOD , Factor de Necrosis Tumoral alfa
4.
Adv Exp Med Biol ; 1087: 3-14, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30259353

RESUMEN

Circular RNAs (cirRNAs) are long, noncoding endogenous RNA molecules and covalently closed continuous loop without 5'-3' polarity and polyadenylated tail which are largely concentrated in the nucleus. CirRNA regulates gene expression by modulating microRNAs and functions as potential biomarker. CirRNAs can translate in vivo to link between their expression and disease. They are resistant to RNA exonuclease and can convert to the linear RNA by microRNA which can then act as competitor to endogenous RNA. This chapter summarizes the evolutionary conservation and expression of cirRNAs, their identification, highlighting various computational approaches on cirRNA, and translation with a focus on the breakthroughs and the challenges in this new field.


Asunto(s)
ARN/genética , Northern Blotting , Biología Computacional , Regulación de la Expresión Génica/genética , Hibridación Fluorescente in Situ , MicroARNs/genética , Reacción en Cadena de la Polimerasa/métodos , Biosíntesis de Proteínas , ARN/análisis , ARN/química , Procesamiento Postranscripcional del ARN , ARN Circular , ARN Largo no Codificante/análisis , ARN Largo no Codificante/química , ARN Largo no Codificante/genética
5.
Pathol Res Pract ; 257: 155317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657558

RESUMEN

Lung cancer (LC) remains a leading cause of cancer-related mortality worldwide, necessitating the exploration of innovative therapeutic strategies. This study delves into the in vitro potential of liposomal therapeutics utilizing Curcumin-loaded PlexoZome® (CUR-PLXZ) in targeting EpCAM/TROP1 and Estrogen Receptor Alpha (ERα) signalling pathways for LC management. The prevalence of LC, particularly non-small cell lung cancer (NSCLC), underscores the urgent need for effective treatments. Biomarkers like EpCAM/TROP1 and ERα/NR3A1 play crucial roles in guiding targeted therapies and influencing prognosis. EpCAM plays a key role in cell-cell adhesion and signalling along with ERα which is a nuclear receptor that binds estrogen and regulates gene expression in response to hormonal signals. In LC, both often get overexpressed and are associated with tumour progression, metastasis, and poor prognosis. Curcumin, a phytochemical with diverse therapeutic properties, holds promise in targeting these pathways. However, its limited solubility and bioavailability necessitate advanced formulations like CUR-PLXZ. Our study investigates the biological significance of these biomarkers in the A549 cell line and explores the therapeutic potential of CUR-PLXZ, which modulates the expression of these two markers. An in vitro analysis of the A549 human lung adenocarcinoma cell line identified that CUR-PLXZ at a dose of 5 µM effectively inhibited the expression of EpCAM and ERα. This finding paves the way for targeted intervention strategies in LC management.


Asunto(s)
Curcumina , Molécula de Adhesión Celular Epitelial , Receptor alfa de Estrógeno , Liposomas , Neoplasias Pulmonares , Humanos , Molécula de Adhesión Celular Epitelial/metabolismo , Curcumina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Receptor alfa de Estrógeno/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células A549 , Antineoplásicos/farmacología
6.
Chem Biol Interact ; 396: 111059, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761875

RESUMEN

Chronic inflammation, oxidative stress, and airway remodelling represent the principal pathophysiological features of chronic respiratory disorders. Inflammation stimuli like lipopolysaccharide (LPS) activate macrophages and dendritic cells, with concomitant M1 polarization and release of pro-inflammatory cytokines. Chronic inflammation and oxidative stress lead to airway remodelling causing irreversible functional and structural alterations of the lungs. Airway remodelling is multifactorial, however, the hormone transforming growth factor-ß (TGF-ß) is one of the main contributors to fibrotic changes. The signalling pathways mediating inflammation and remodelling rely both on the transcription factor nuclear factor-κB (NFκB), underlying the potential of NFκB inhibition as a therapeutic strategy for chronic respiratory disorders. In this study, we encapsulated an NFκB-inhibiting decoy oligodeoxynucleotide (ODN) in spermine-functionalized acetalated dextran (SpAcDex) nanoparticles and tested the in vitro anti-inflammatory and anti-remodelling activity of this formulation. We show that NF-κB ODN nanoparticles counteract inflammation by reversing LPS-induced expression of the activation marker CD40 in myeloid cells and counteracts remodelling features by reversing the TGF-ß-induced expression of collagen I and α-smooth muscle actin in human dermal fibroblast. In summary, our study highlights the great potential of inhibiting NFκB via decoy ODN as a therapeutic strategy tackling multiple pathophysiological features underlying chronic respiratory conditions.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , FN-kappa B , Nanopartículas , Oligodesoxirribonucleótidos , Espermina , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/química , Humanos , Nanopartículas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , FN-kappa B/metabolismo , Espermina/farmacología , Espermina/química , Lipopolisacáridos/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis/tratamiento farmacológico
7.
Pathol Res Pract ; 253: 155038, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101157

RESUMEN

Lung cancer is one of the leading causes of death worldwide, whereby the major contributing factors are cigarette smoking and exposure to environmental pollutants. Despite the availability of numerous treatment options, including chemotherapy, the five-year survival rate is still extremely low, highlighting the urgent need to develop novel, more effective therapeutic strategies. In this context, the repurposing of previously approved drugs is an advantage in terms of time and resources invested. Ribavirin is an antiviral drug approved for the treatment of hepatitis C, which shows potential for repurposing as an anticancer agent. Among the many signaling molecules promoting carcinogenesis, the interleukins (ILs) IL-6 and IL-8 are interesting therapeutic targets as they promote a variety of cancer hallmarks such as cell proliferation, migration, metastasis, and angiogenesis. In the present study, we show that ribavirin significantly downregulates the expression of IL-6 and IL-8 in vitro in A549 human lung adenocarcinoma cells. The results of this study shed light on the anticancer mechanisms of ribavirin, providing further proof of its potential as a repurposed drug for the treatment of lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Ribavirina/farmacología , Ribavirina/uso terapéutico , Interleucina-6 , Interleucina-8 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/patología , Carcinogénesis
8.
Life Sci ; 352: 122859, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38925223

RESUMEN

Lung cancer is among leading causes of death worldwide. The five-year survival rate of this disease is extremely low (17.8 %), mainly due to difficult early diagnosis and to the limited efficacy of currently available chemotherapeutics. This underlines the necessity to develop innovative therapies for lung cancer. In this context, drug repurposing represents a viable approach, as it reduces the turnaround time of drug development removing costs associated to safety testing of new molecular entities. Ribavirin, an antiviral molecule used to treat hepatitis C virus infections, is particularly promising as repurposed drug for cancer treatment, having shown therapeutic activity against glioblastoma, acute myeloid leukemia, and nasopharyngeal carcinoma. In the present study, we thoroughly investigated the in vitro anticancer activity of ribavirin against A549 human lung adenocarcinoma cells. From a functional standpoint, ribavirin significantly inhibits cancer hallmarks such as cell proliferation, migration, and colony formation. Mechanistically, ribavirin downregulates the expression of numerous proteins and genes regulating cell migration, proliferation, apoptosis, and cancer angiogenesis. The anticancer potential of ribavirin was further investigated in silico through gene ontology pathway enrichment and protein-protein interaction networks, identifying five putative molecular interactors of ribavirin (Erb-B2 Receptor Tyrosine Kinase 4 (Erb-B4); KRAS; Intercellular Adhesion Molecule 1 (ICAM-1); amphiregulin (AREG); and neuregulin-1 (NRG1)). These interactions were characterized via molecular docking and molecular dynamic simulations. The results of this study highlight the potential of ribavirin as a repurposed chemotherapy against lung cancer, warranting further studies to ascertain the in vivo anticancer activity of this molecule.


Asunto(s)
Antineoplásicos , Proliferación Celular , Reposicionamiento de Medicamentos , Neoplasias Pulmonares , Ribavirina , Humanos , Reposicionamiento de Medicamentos/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ribavirina/farmacología , Células A549 , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Biología Computacional/métodos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo
9.
Pathol Res Pract ; 257: 155295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603841

RESUMEN

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Asunto(s)
Ácido Glicirretínico , Nanopartículas , Humanos , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , Antivirales/farmacología , Humo/efectos adversos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Línea Celular , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Fumar Cigarrillos/efectos adversos
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2465-2483, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37851060

RESUMEN

The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1ß and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.


Asunto(s)
Fumar Cigarrillos , Nanopartículas , Sesquiterpenos , Animales , Humanos , Ratones , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Inflamación , FN-kappa B/metabolismo , Estrés Oxidativo
11.
Nutrients ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839377

RESUMEN

Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1ß, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Antioxidantes/farmacología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Células Epiteliales , Nicotiana
12.
Pathol Res Pract ; 250: 154832, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37774532

RESUMEN

PURPOSE: Non-small cell lung cancer (NSCLC) is among the leading causes of morbidity and mortality worldwide. Despite the availability of several treatment options, the five-year survival rate of NSCLC is extremely low (<20%). This underlines the necessity of more effective therapeutic alternatives. In this context, plant-derived extracts and bioactive molecules extracted from plants, known collectively as phytoceuticals, represent an extremely variegated source of bioactive compounds with potent anticancer potential. In the present study, we tested the in vitro anticancer activity of a polyherbal preparation, VEDICINALS®9, containing nine different bioactive principles extracted by medicinal plants. METHODS: The anticancer activity of VEDICINALS®9 was investigated by measuring its impact on A549 human NSCLC cell proliferation (MTT assay and trypan blue staining), migration (wound healing assay and transwell chamber assay) and by measuring the impact on the expression of cancer-related proteins (Human XL Oncology Protein Array). RESULTS: We show that VEDICINALS®9 at a concentration of 0.2% v/v has potent anticancer effect, significantly inhibiting A549 cell proliferation and migration. Mechanistically, this was achieved by downregulating the expression of proteins involved in cancer cell proliferation (Axl, FGF basic, enolase 2, progranulin, survivin) and migration (Dkk-1, cathepsins B and D, BCL-x, amphiregulin, CapG, u-plasminogen activator). Furthermore, treatment with VEDICINALS®9 resulted in increased expression of the oncosuppressor protein p53 and of the angiogenesis inhibitor endostatin. CONCLUSIONS: Taken together, our results provide proof of principle of the potent anticancer activity of the polyherbal preparation VEDICINALS®9, highlighting its enormous potential as an alternative or adjuvant therapy for lung cancer.

13.
Toxicol In Vitro ; 92: 105660, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591407

RESUMEN

Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-ß (TGF-ß), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-ß is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-ß-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-ß-induced migration, reducing the levels of proteins upregulated by TGF-ß including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-ß. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-ß. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-ß-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.


Asunto(s)
Berberina , Humanos , Berberina/farmacología , Remodelación de las Vías Aéreas (Respiratorias) , Antioxidantes , Proliferación Celular , Células Epiteliales
14.
Chem Biol Interact ; 385: 110737, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774998

RESUMEN

Chronic respiratory diseases like asthma and Chronic Obstructive Pulmonary Disease (COPD) have been a burden to society for an extended period. Currently, there are only preventative treatments in the form of mono- or multiple-drug therapy available to patients who need to utilize it daily. Hence, throughout the years there has been a substantial amount of research in understanding what causes inflammation in the context of these diseases. For example, the transcription factor NFκB has a pivotal role in causing chronic inflammation. Subsequent research has been exploring ways to block the activation of NFκB as a potential therapeutic strategy for many inflammatory diseases. One of the possible ways through which this is probable is the utilisation of decoy oligodeoxynucleotides, which are synthetic, short, single-stranded DNA fragments that mimic the consensus binding site of a targeted transcription factor, thereby functionally inactivating it. However, limitations to the implementation of decoy oligodeoxynucleotides include their rapid degradation by intracellular nucleases and the lack of targeted tissue specificity. An advantageous approach to overcome these limitations involves using nanoparticles as a vessel for drug delivery. In this review, all of those key elements will be explored as to how they come together as an application to treat chronic inflammation in respiratory diseases.

15.
Pathol Res Pract ; 251: 154895, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37879146

RESUMEN

PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro. METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR. RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1ß, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1ß, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components. CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.


Asunto(s)
Lipopolisacáridos , Macrófagos , Ratones , Animales , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapéutico , Interleucina-6/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Estrés Oxidativo , FN-kappa B/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-37991539

RESUMEN

Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties. This picture was generated with BioRender.

17.
Eur Respir Rev ; 31(165)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35831008

RESUMEN

Workers in the mining and construction industries are at increased risk of respiratory and other diseases as a result of being exposed to harmful levels of airborne particulate matter (PM) for extended periods of time. While clear links have been established between PM exposure and the development of occupational lung disease, the mechanisms are still poorly understood. A greater understanding of how exposures to different levels and types of PM encountered in mining and construction workplaces affect pathophysiological processes in the airways and lungs and result in different forms of occupational lung disease is urgently required. Such information is needed to inform safe exposure limits and monitoring guidelines for different types of PM and development of biomarkers for earlier disease diagnosis. Suspended particles with a 50% cut-off aerodynamic diameter of 10 µm and 2.5 µm are considered biologically active owing to their ability to bypass the upper respiratory tract's defences and penetrate deep into the lung parenchyma, where they induce potentially irreversible damage, impair lung function and reduce the quality of life. Here we review the current understanding of occupational respiratory diseases, including coal worker pneumoconiosis and silicosis, and how PM exposure may affect pathophysiological responses in the airways and lungs. We also highlight the use of experimental models for better understanding these mechanisms of pathogenesis. We outline the urgency for revised dust control strategies, and the need for evidence-based identification of safe level exposures using clinical and experimental studies to better protect workers' health.


Asunto(s)
Enfermedades Pulmonares , Enfermedades Profesionales , Exposición Profesional , Carbón Mineral/efectos adversos , Polvo/análisis , Humanos , Pulmón , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/etiología , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/etiología , Exposición Profesional/efectos adversos , Calidad de Vida , Dióxido de Silicio/efectos adversos
18.
Nutrients ; 14(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145202

RESUMEN

Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.


Asunto(s)
Curcumina , Enfermedad Pulmonar Obstructiva Crónica , Antiinflamatorios/farmacología , Antioxidantes/uso terapéutico , Curcumina/uso terapéutico , Alimentos Funcionales , Humanos , Hipoglucemiantes/uso terapéutico , Inflamación/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Rutina/uso terapéutico
19.
Environ Sci Pollut Res Int ; 29(36): 54072-54087, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35657545

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this review article is to establish an understanding about the relationship between autoimmune conditions and COVID-19 infections. Although majority of the population have been protected with vaccines against this virus, there is yet a successful curative medication for this disease. The use of autoimmune medications has been widely considered to control the infection, thus postulating possible relationships between COVID-19 and autoimmune diseases. Several studies have suggested the correlation between autoantibodies detected in patients and the severity of the COVID-19 disease. Studies have indicated that the SARS-CoV-2 virus can disrupt the self-tolerance mechanism of the immune system, thus triggering autoimmune conditions. This review discusses the current scenario and future prospects of promising therapeutic strategies that may be employed to regulate such autoimmune conditions.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Autoanticuerpos , Humanos , SARS-CoV-2 , Virulencia
20.
Biofabrication ; 13(3)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561837

RESUMEN

Obstructive sleep apnea (OSA) is a chronic disorder that involves a decrease or complete cessation of airflow during sleep. It occurs when the muscles supporting the soft tissues in the throat relax during sleep, causing narrowing or closure of the upper airway. Sleep apnea is a serious medical condition with an increased risk of cardiovascular complications and impaired quality of life. Continuous positive airway pressure (CPAP) is the most effective treatment for moderate to severe cases of OSA and is effective in mild sleep apnea. However, CPAP therapy is associated with the development of several nasal side effects and is inconvenient for the user, leading to low compliance rates. The effects of CPAP treatment on the upper respiratory system, as well as the pathogenesis of side effects, are incompletely understood and not adequately researched. To better understand the effects of CPAP treatment on the upper respiratory system, we developed anin vitro3D-printed microfluidic platform. A nasal epithelial cell line, RPMI 2650, was then exposed to certain conditions to mimic thein vivoenvironment. To create these conditions, the microfluidic device was utilized to expose nasal epithelial cells grown and differentiated at the air-liquid interface. The airflow was similar to what is experienced with CPAP, with pressure ranging between 0 and 20 cm of H2O. Cells exposed to pressure showed decreased barrier integrity, change in cellular shape, and increased cell death (lactate dehydrogenase release into media) compared to unstressed cells. Stressed cells also showed increased secretions of inflammatory markers IL-6 and IL-8 and had increased production of ATP. Our results suggest that stress induced by airflow leads to structural, metabolic, and inflammatory changes in the nasal epithelium, which may be responsible for developing nasal side-effects following CPAP treatment.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Calidad de Vida , Microfluídica , Mucosa Nasal , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA