Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 161(2): 173-186, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35157328

RESUMEN

Severe traumatic brain injury (TBI) is associated with high rates of mortality and long-term disability linked to neurochemical abnormalities. Although purine derivatives play important roles in TBI pathogenesis in preclinical models, little is known about potential changes in purine levels and their implications in human TBI. We assessed cerebrospinal fluid (CSF) levels of purines in severe TBI patients as potential biomarkers that predict mortality and long-term dysfunction. This was a cross-sectional study performed in 17 severe TBI patients (Glasgow Coma Scale <8) and 51 controls. Two to 4 h after admission to ICU, patients were submitted to ventricular drainage and CSF collection for quantification of adenine and guanine purine derivatives by HPLC. TBI patients' survival was followed up to 3 days from admission. A neurofunctional assessment was performed through the modified Rankin Scale (mRS) 2 years after ICU admission. Purine levels were compared between control and TBI patients, and between surviving and non-surviving patients. Relative to controls, TBI patients presented increased CSF levels of GDP, guanosine, adenosine, inosine, hypoxanthine, and xanthine. Further, GTP, GDP, IMP, and xanthine levels were different between surviving and non-surviving patients. Among the purines, guanosine was associated with improved mRS (p = 0.042; r = -0.506). Remarkably, GTP displayed predictive value (AUC = 0.841, p = 0.024) for discriminating survival versus non-survival patients up to 3 days from admission. These results support TBI-specific purine signatures, suggesting GTP as a promising biomarker of mortality and guanosine as an indicator of long-term functional disability.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Biomarcadores/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/diagnóstico , Estudios Transversales , Escala de Coma de Glasgow , Guanosina , Guanosina Trifosfato , Humanos , Purinas , Xantina
2.
Horm Behav ; 127: 104872, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069754

RESUMEN

The astrocytic glutamate transporter GLT-1 performs glutamate uptake thereby mediating NMDAr responses in neurons. Ceftriaxone (CEF) upregulates astrocytic GLT-1 expression/activity, which could counteract excessive glutamate levels and aggressive behavior induced by anabolic synthetic steroids such as nandrolone decanoate (ND). Here, adult male CF-1 mice were allocated to oil (VEH), ND, CEF, and ND/CEF groups. Mice were subcutaneously (s.c.) injected with ND (15 mg/kg) or VEH for 19 days, and received intraperitoneal (i.p.) injections of CEF (200 mg/kg) or saline for 5 days. The ND/CEF group received ND for 19 days plus coadministration of CEF in the last 5 days. On the 19th day, the aggressive phenotypes were evaluated through the resident-intruder test. After 24 h, cerebrospinal fluid was collected to measure glutamate levels, and the pre-frontal cortex was used to assess GLT-1, pGluN2BTyr1472, and pGluN2ATyr1246 by Western blot. Synaptosomes from the left brain hemisphere was used to evaluate mitochondrial function including complex II-succinate dehydrogenase (SDH), Ca2+ handling, membrane potential (ΔÑ°m), and H2O2 production. ND decreased the latency for the first attack and increased the number of attacks by the resident mice against the intruder, mechanistically associated with an increase in glutamate levels and pGluN2BTyr1472 but not pGluN2ATyr1244, and GLT-1 downregulation. The abnormalities in mitochondrial Ca2+ influx, SDH, ΔÑ°m, and H2O2 implies in deficient energy support to the synaptic machinery. The ND/CEF group displayed a decreased aggressive behavior, normalization of glutamate and pGluN2BTyr1472levels, and mitochondrial function at synaptic terminals. In conclusion, the pharmacological modulation of GLT-1 highlights its relevance as an astrocytic target against highly impulsive and aggressive phenotypes.


Asunto(s)
Agresión/efectos de los fármacos , Astrocitos/fisiología , Transportador de Glucosa de Tipo 1/fisiología , Psicosis Inducidas por Sustancias/psicología , Congéneres de la Testosterona/efectos adversos , Agresión/fisiología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nandrolona/efectos adversos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Psicosis Inducidas por Sustancias/metabolismo , Psicosis Inducidas por Sustancias/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Trastornos Relacionados con Sustancias/complicaciones , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/psicología , Regulación hacia Arriba/efectos de los fármacos
3.
J Anesth ; 35(6): 818-826, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390392

RESUMEN

PURPOSE: Allopurinol is a potent inhibitor of the enzyme xanthine oxidase used primarily in the treatment of hyperuricemia and gout. The aim of this study was to compare the analgesic efficacy of preanesthetic allopurinol versus placebo on postoperative pain and anxiety in patients undergoing abdominal hysterectomy. METHODS: This is a prospective, double-blinded, placebo-controlled, randomized clinical trial. We investigated 54 patients scheduled to undergo elective abdominal hysterectomy. Patients were randomly assigned to receive either oral allopurinol 300 mg (n = 27) or placebo (n = 27) the night before and 1 h before surgery. Patients were submitted to evaluation of pain and anxiety before the treatment, for 24 h postoperatively, 30 and 90 days after surgery. Cerebrospinal fluid was collected at the time of the spinal anesthesia to perform the measurement of the central levels of purines. RESULTS: Preoperative administration of allopurinol was effective in reducing postoperative pain 2 h after surgery. Allopurinol caused a reduction of approximately 40% in pain scores measured by the visual analogue pain scale after surgery (p < 0.05). No differences were found between groups in anxiety scores after surgery. There was a significant change in the cerebrospinal fluid concentrations of xanthine and uric acid before surgery (p < 0.01). CONCLUSION: This study showed a short-term benefit of the use of allopurinol as a preanesthetic medication since it was related to a reduction on pain scores 2 h after surgery. The purinergic system is a potential target for new analgesic drugs. New studies investigating more selective purine derivatives in the management of pain should be performed. TRIAL NUMBER REGISTRATION: Brazilian Registry of Clinical Trials-ReBEC #RBR-9pw58p.


Asunto(s)
Alopurinol , Dolor Postoperatorio , Método Doble Ciego , Femenino , Humanos , Histerectomía/efectos adversos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Estudios Prospectivos , Xantina Oxidasa
4.
Neurochem Res ; 41(7): 1578-86, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26915106

RESUMEN

Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems.


Asunto(s)
Acetilcolinesterasa/análisis , Aminoácidos/análisis , Astrocitos/química , Corteza Cerebral/química , ATPasa Intercambiadora de Sodio-Potasio/análisis , Acetilcolinesterasa/metabolismo , Factores de Edad , Aminoácidos/metabolismo , Animales , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Proteínas Transportadoras de GABA en la Membrana Plasmática/análisis , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Masculino , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
5.
Purinergic Signal ; 12(1): 149-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26695181

RESUMEN

In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Guanosina/administración & dosificación , Guanosina/uso terapéutico , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Administración Intranasal , Animales , Conducta Animal , Isquemia Encefálica/psicología , Infarto Cerebral/patología , Infarto Cerebral/prevención & control , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Guanosina/líquido cefalorraquídeo , Guanosina/farmacocinética , Masculino , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/líquido cefalorraquídeo , Fármacos Neuroprotectores/farmacocinética , Ratas , Ratas Wistar , Accidente Cerebrovascular/psicología
6.
Neurochem Res ; 40(11): 2262-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26408294

RESUMEN

Labor pain has been reported as a severe pain and can be considered as a model of acute visceral pain. It is well known that extracellular purines have an important role in pain signaling in the central nervous system. This study analyzes the relationship between extracellular purines and pain perception during active labor. A prospective observational study was performed. Cerebrospinal fluid (CSF) levels of the purines and their metabolites were compared between women at term pregnancy with labor pain (n = 49) and without labor pain (Caesarian section; n = 47). Control groups (healthy men and women without chronic or acute pain-n = 40 and 32, respectively) were also investigated. The CSF levels of adenosine were significantly lower in the labor pain group (P = 0.026) and negatively correlated with pain intensity measured by a visual analogue scale (r = -0.48, P = 0.0005). Interestingly, CSF levels of uric acid were significantly higher in healthy men as compared to women. Additionally, pregnant women showed increased CSF levels of ADP, GDP, adenosine and guanosine and reduced CSF levels of AMP, GTP, and uric acid as compared to non-pregnant women (P < 0.05). These findings suggest that purines, in special the nucleoside adenosine, are associated with pregnancy and labor pain.


Asunto(s)
Dolor de Parto/líquido cefalorraquídeo , Trabajo de Parto/líquido cefalorraquídeo , Purinas/líquido cefalorraquídeo , Adenosina/líquido cefalorraquídeo , Adenosina Difosfato/líquido cefalorraquídeo , Adulto , Cesárea , Femenino , Guanosina/líquido cefalorraquídeo , Guanosina Difosfato/líquido cefalorraquídeo , Humanos , Masculino , Dimensión del Dolor , Percepción del Dolor , Embarazo , Estudios Prospectivos
7.
Neurochem Res ; 40(3): 514-23, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25492133

RESUMEN

Metformin (Met), which is an insulin-sensitizer, decreases insulin resistance and fasting insulin levels. The precise molecular target of Met is unknown; however, several reports have shown an inhibitory effect on mitochondrial complex I of the electron transport chain (ETC), which is a related site for reactive oxygen species production. In addition to peripheral effects, Met is capable of crossing the blood-brain barrier, thus regulating the central mechanism involved in appetite control. The present study explores the effects of intracerebroventricular (i.c.v.) infusion of Met on ROS production on brain, insulin sensitivity and metabolic and oxidative stress outcomes in CF1 mice. Metformin (Met 50 and 100 µg) was injected i.c.v. in mice daily for 7 days; the brain mitochondrial H2O2 production, food intake, body weight and fat pads were evaluated. The basal production of H2O2 of isolated mitochondria from the hippocampus and hypothalamus was significantly increased by Met (100 µg). There was increased peripheral sensitivity to insulin (Met 100 µg) and glucose tolerance tests (Met 50 and 100 µg). Moreover, Met decreased food intake, body weight, body temperature, fat pads and survival rates. Additionally, Met (1, 4 or 10 mM) decreased mitochondrial viability and increased the production of H2O2 in neuronal cell cultures. In summary, our data indicate that a high dose of Met injected directly into the brain has remarkable neurotoxic effects, as evidenced by hypothermia, hypoglycemia, disrupted mitochondrial ETC flux and decreased survival rate.


Asunto(s)
Peso Corporal/efectos de los fármacos , Hipoglucemia/mortalidad , Metformina/administración & dosificación , Metformina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Peso Corporal/fisiología , Células Cultivadas , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/toxicidad , Infusiones Intraventriculares , Masculino , Ratones , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Tasa de Supervivencia/tendencias
8.
Horm Behav ; 66(2): 383-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24937439

RESUMEN

Nandrolone decanoate (ND), an anabolic androgenic steroid (AAS), induces an aggressive phenotype by mechanisms involving glutamate-induced N-methyl-d-aspartate receptor (NMDAr) hyperexcitability. The astrocytic glutamate transporters remove excessive glutamate surrounding the synapse. However, the impact of supraphysiological doses of ND on glutamate transporters activity remains elusive. We investigated whether ND-induced aggressive behavior is interconnected with GLT-1 activity, glutamate levels and abnormal NMDAr responses. Two-month-old untreated male mice (CF1, n=20) were tested for baseline aggressive behavior in the resident-intruder test. Another group of mice (n=188) was injected with ND (15mg/kg) or vehicle for 4, 11 and 19days (short-, mid- and long-term endpoints, respectively) and was evaluated in the resident-intruder test. Each endpoint was assessed for GLT-1 expression and glutamate uptake activity in the frontoparietal cortex and hippocampal tissues. Only the long-term ND endpoint significantly decreased the latency to first attack and increased the number of attacks, which was associated with decreased GLT-1 expression and glutamate uptake activity in both brain areas. These alterations may affect extracellular glutamate levels and receptor excitability. Resident males were assessed for hippocampal glutamate levels via microdialysis both prior to, and following, the introduction of intruders. Long-term ND mice displayed significant increases in the microdialysate glutamate levels only after exposure to intruders. A single intraperitoneal dose of the NMDAr antagonists, memantine or MK-801, shortly before the intruder test decreased aggressive behavior. In summary, long-term ND-induced aggressive behavior is associated with decreased extracellular glutamate clearance and NMDAr hyperexcitability, emphasizing the role of this receptor in mediating aggression mechanisms.


Asunto(s)
Agresión/efectos de los fármacos , Anabolizantes/farmacología , Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Homeostasis/efectos de los fármacos , Nandrolona/farmacología , Animales , Química Encefálica/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/metabolismo , Espacio Extracelular/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
9.
Mult Scler Relat Disord ; 80: 105022, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864878

RESUMEN

BACKGROUND: Autoantibodies against surface neuronal antigens have been associated with specific neurological presentations including autoimmune encephalitis (AE), with variable association with neoplasia and infections. METHODS: We described the phenotype and environmental associations of patients with neurological syndromes associated with antibodies against neuronal surface antigens who were referred to a tertiary center in the South of Brazil. All patients were tested for neuronal autoantibodies using cell-based assays. Clinical, radiological, and laboratory findings were retrospectively reviewed. RESULTS: We identified 16 patients, 15 had subacute, and one had a progressive disease course. Among patients with subacute onset, 11 (73 %) were N-Methyl-d-Aspartate receptor (NMDAr-IgG)+, 3 (20 %) were Leucine-rich Glioma-Inactivated-1 (LGI1-IgG)+, and 1 (6 %) was positive for Glycine receptor-IgG. The patient with a progressive disease course had antibodies against IgLON5. Most patients had disease onset in spring and summer suggesting environmental factors for the development of AE. Also, we observed a different pattern of brain lesions when NMDAr-IgG encephalitis followed herpes encephalitis and a previously unreported association with Rosai-Dorfman-Destombe disease. All patients with encephalopathy met criteria for possible AE and all proven NMDAr-IgG+ met criteria for NMDAr-IgG encephalitis. However, only one LGI1-IgG+ patient fulfilled clinical criteria for limbic encephalitis. All but one received high-dose intravenous methylprednisolone, 11 also had intravenous human immunoglobulin, and 4 plasma exchange. Furthermore, all patients received second-line immunotherapy. Importantly, most patients improved with immunotherapy, even when initiated later in the disease course. CONCLUSION: We identified seasonal variability associated with neuronal surface antibodies suggesting environmental triggers. Also, we described the coexistence of NMDAr-IgG encephalitis with histiocytosis. In our series, most patients received second-line immunotherapy. We observed neurologic improvement after treatment even in cases of delayed diagnosis. Increasing the recognition and availability of tests and treatments for these conditions is of paramount importance in low- and middle-income countries.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Encefalitis por Herpes Simple , Humanos , Estudios Retrospectivos , Antígenos de Superficie , Autoanticuerpos , Síndrome , Inmunoglobulina G , Moléculas de Adhesión Celular Neuronal
10.
Neurol Sci ; 33(5): 985-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22167652

RESUMEN

Chronic cerebral hypoperfusion contributes to a cognitive decline related to brain disorders. Its experimental model in rats is a permanent bilateral common carotid artery occlusion (2VO). Overstimulation of the glutamatergic system excitotoxicity due to brain energetic disturbance in 2VO animals seems to play a pivotal role as a mechanism of cerebral damage. The nucleoside guanosine (GUO) exerts extracellular effects including antagonism of glutamatergic activity. Accordingly, our group demonstrated several neuroprotective effects of GUO against glutamatergic excitotoxicity. Therefore, in this study, we evaluated a chronic GUO treatment effects in rats submitted to 2VO. We evaluated the animals performance in the Morris water maze and hippocampal damage by neurons and astrocytes immunohistochemistry. In addition, we investigated the cerebrospinal fluid (CSF) brain derived neurotrophic factor (BDNF) and serum S100B levels. Additionally, the purine CSF and plasma levels were determined. GUO treatment did not prevent the cognitive impairment promoted by 2VO. However, none of the 2VO animals treated with GUO showed differences in the hippocampal regions compared to control, while 20% of 2VO rats not treated with GUO presented loss of pyramidal neurons and increased glial labeling cells in CA1 hippocampal region. In addition, we did not observe differences in CSF BDNF nor serum S100B levels among the groups. Of note, both the 2VO surgery and GUO treatment changed the purine CSF and plasma profile. In conclusion, GUO treatment did not prevent the cognitive impairment observed in 2VO animals, but our data suggest that GUO could be neuroprotective against hippocampal damage induced by 2VO.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Cognición/efectos de los fármacos , Guanosina/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Cromatografía Líquida de Alta Presión , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Hipocampo/metabolismo , Hipocampo/patología , Inmunohistoquímica , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Purinas/sangre , Purinas/líquido cefalorraquídeo , Ratas , Ratas Wistar
11.
Curr Opin Neurobiol ; 76: 102618, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35973380

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune inflammatory disease of the central nervous system. Most of the cases are positive for autoantibodies targeting the water channel aquaporin-4 (AQP4-IgG). Activated B and T cells, innate immunity cells, pro-inflammatory cytokines, and activated complement contribute to the formation of the NMOSD lesions. Optic neuritis, longitudinally extensive myelitis, and area postrema syndrome are core clinical manifestations. NMOSD diagnosis is based on clinical manifestations, magnetic resonance imaging findings, and AQP4-IgG positivity. Cell-based assays are the preferred method for the detection of AQP4-IgG. Acute relapses are treated with IV methylprednisolone or plasma exchange. Recent advances on the NMOSD immunobiology led to approved treatments such as eculizumab, satralizumab, and inebilizumab.


Asunto(s)
Neuromielitis Óptica , Autoanticuerpos , Citocinas , Humanos , Inmunoglobulina G , Metilprednisolona , Neuromielitis Óptica/terapia
12.
Mov Disord ; 26(4): 731-5, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21506152

RESUMEN

Spinocerebellar ataxias (SCAs) constitute a group of autosomal dominant neurodegenerative disorders with no current treatment. The insulin/insulin-like growth factor 1 (IGF-1) system (IIS) has been shown to play a role in the neurological dysfunction of SCAs and other polyglutamine disorders. We aimed to study the biomarker profile of serum IIS components in SCA3. We performed a case-control study with 46 SCA3 patients and 42 healthy individuals evaluating the peripheral IIS profile (insulin, IGF-1, IGFBP1 and 3) and the correlation with clinical, molecular, and neuroimaging findings. SCA3 patients presented lower insulin and IGFBP3 levels and higher insulin sensitivity (HOMA2), free IGF-I, and IGFBP1 levels when compared with controls. IGFBP-1 levels were directly associated with CAG expanded repeat length; IGF-1 was associated with the volumetries of specific brainstem regions on magnetic resonance imaging (MRI). Insulin levels and sensitivity were related to age at onset of symptoms. Our findings indicate an involvement of IIS components in SCA3 neurobiology and IGFBP-1 as a potential biomarker of the disease.


Asunto(s)
Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/sangre , Enfermedad de Machado-Joseph/sangre , Adulto , Ataxina-3 , Estudios de Casos y Controles , Femenino , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Enfermedad de Machado-Joseph/genética , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética
13.
Front Immunol ; 12: 642272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025652

RESUMEN

Human antibodies against Myelin Oligodendrocyte Glycoprotein (MOG) from immunoglobulin-G subclasses (MOG-IgG) have been recently associated with a new subgroup of neurological autoimmune diseases with distinct clinical characteristics from multiple sclerosis and neuromyelitis optica spectrum disorders. The use of MOG-IgG as a biomarker is an essential tool to assist in the diagnosis and clinical prognosis. The cell-based assay (CBA) is a methodology that expresses high levels of natively folded human MOG protein in the cell membrane being the methodology most used for clinical MOG-IgG diagnosis. However, there is still no consensus about the best approach to perform CBA to improve the results. The CBA using flow cytometry (CBA-FC) is an automated technique with objective quantification, reducing the subject of human bias that occurred at CBA using immunofluorescence (CBA-IF). In this study, we compared the performance of CBA-IF and CBA-FC as an acquisition tool analysis. The sera of 104 patients diagnosed with inflammatory Central Nervous System diseases were tested in both CBA-IF and CBA-FC. We used the dilution of 1:128 for CBA-IF and three different dilutions (1:20, 1:100, and 1:640) for CBA-FC. The CBA-FC and CBA-IF results had 88.5% agreement between assays and the CBA-IF titers by endpoint-dilution correlated with the CBA-FC titers. The highest serum dilution resulted in an increased CBA-FC specificity, but there was a reduction in the CBA-FC sensitivity. Our study showed that CBA-FC can be used in clinical practice as a diagnostic technique for MOG-IgG. In addition, in some specific cases, the combination of both techniques could be used as a tool to discriminate unspecific binding and overcome single assay limitations.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Citometría de Flujo/métodos , Inmunoglobulina G/sangre , Microscopía Fluorescente/métodos , Glicoproteína Mielina-Oligodendrócito/inmunología , Adulto , Autoantígenos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
Restor Neurol Neurosci ; 38(1): 1-9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31594262

RESUMEN

BACKGROUND: Spinal cord injury (SCI) patients represent a heterogeneous group, with injuries ranging from partial compression to complete transection. Patients with complete injuries are unlikely to exhibit recovery and suffer from paralysis as well as the loss of bowel and bladder function. One treatment option is the formation of a bridge through a lesion site, whereby transplanted cells or biocompatible scaffolds guide the regenerating axons across the site of injury. Moreover, the viability of transplanted dorsal root ganglia (DRGs) into rat spinal cord has been previously demonstrated. OBJECTIVE: We aim to demonstrate the feasibility of using DRG axons as a bridging tool to help guide the axonal growth of cortical neurons. METHODS: Cortical neurons were isolated from embryonic rats and two aggregated populations were cultured at increasing distances in isolation and in a co-culture with DRG explants. Growth rates of the sprouting axons and connections between the two populations were observed over a period of twelve days. RESULTS: DRG explants demonstrated the ability to grow robust axonal connections that can connect two explants separated by up to 10 mm, however, CNAs could not achieve connections in distances greater than 2 mm. The co-culture of CNAs with DRG explants facilitated axonal growth between two populations of CNAs at distances they cannot otherwise traverse. CONCLUSIONS: Our findings support the use of DRG axons to facilitate the growth of cortical neurons in a process of axon-facilitated axon regeneration. We believe these results could have implications for the treatment of SCI.


Asunto(s)
Axones/fisiología , Ganglios Espinales/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/terapia , Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/fisiopatología , Ratas , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología
15.
Pharmacol Biochem Behav ; 91(4): 549-53, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18854198

RESUMEN

Excitatory amino acids (EAAs) and their receptors play a central role in the mechanisms underlying pain transmission. NMDA-receptor antagonists such as MK-801 produce antinociceptive effects against experimental models of chronic pain, but results in acute pain models are conflicting, perhaps due to increased glutamate availability induced by the NMDA-receptor antagonists. Since guanosine and riluzole have recently been shown to stimulate glutamate uptake, the aim of this study was to examine the effects of guanosine or riluzole on changes in nociceptive signaling induced by MK-801 in an acute pain model. Rats received an i.p. injection of vehicle, morphine, guanosine, riluzole or MK-801 or a combined treatment (vehicle, morphine, guanosine or riluzole+MK-801) and were evaluated in the tail flick test, or had a CSF sample drawn after 30 min. Riluzole, guanosine, and MK-801 (0.01 or 0.1 mg/kg) did not affect basal nociceptive responses or CSF EAAs levels. However, MK-801 (0.5 mg/kg) induced hyperalgesia and increased the CSF EAAs levels; both effects were prevented by guanosine, riluzole or morphine. Hyperalgesia was correlated with CSF aspartate and glutamate levels. This study provides additional evidence for the mechanism of action of MK-801, showing that MK-801 induces hyperalgesia with parallel increase in CSF EAAs levels.


Asunto(s)
Maleato de Dizocilpina/antagonistas & inhibidores , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Aminoácidos Excitadores/líquido cefalorraquídeo , Guanosina/farmacología , Hiperalgesia/inducido químicamente , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Cromatografía Líquida de Alta Presión , Hiperalgesia/psicología , Masculino , Morfina/farmacología , Narcóticos/farmacología , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Riluzol/farmacología
16.
J Neurotrauma ; 36(14): 2246-2259, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30794079

RESUMEN

Traumatic brain injury (TBI) increases Ca2+ influx into neurons and desynchronizes mitochondrial function leading to energy depletion and apoptosis. This process may be influenced by brain testosterone (TS) levels, which are known to decrease after TBI. We hypothesized that a TS-based therapy could preserve mitochondrial neuroenergetics after TBI, thereby reducing neurodegeneration. C57BL/6J mice were submitted to sham treatment or severe parasagittal controlled cortical impact (CCI) and were subcutaneously injected with either vehicle (VEH-SHAM and VEH-CCI) or testosterone cypionate (15 mg/kg, TS-CCI) for 10 days. Cortical tissue homogenates ipsilateral to injury were used for neurochemical analysis. The VEH-CCI group displayed an increased Ca2+-induced mitochondrial swelling after the addition of metabolic substrates (pyruvate, malate, glutamate, succinate, and adenosine diphosphate [PMGSA]). The addition of Na+ stimulated mitochondrial Ca2+ extrusion through Na+/Ca2+/Li+ exchanger (NCLX) in VEH-SHAM and TS-CCI, but not in the VEH-CCI group. Reduction in Ca2+ efflux post-injury was associated with impaired mitochondrial membrane potential formation/dissipation, and decreased mitochondrial adenosine triphosphate (ATP)-synthase coupling efficiency. Corroborating evidence of mitochondrial uncoupling was observed with an increase in H2O2 production post-injury, but not in superoxide dismutase (SOD2) protein levels. TS administration significantly reduced these neuroenergetic alterations. At molecular level, TS prevented the increase in pTauSer396 and alpha-Spectrin fragmentation by the Ca2+dependent calpain-2 activation, and decreased both caspase-3 activation and Bax/BCL-2 ratio, which suggests a downregulation of mitochondrial apoptotic signals. Search Tool for the Retrieval of Interacting Genes/Proteins database provided two distinct gene/protein clusters, "upregulated and downregulated," interconnected through SOD2. Therefore, TS administration after a severe CCI improves the mitochondrial Ca2+extrusion through NCLX exchanger and ATP synthesis efficiency, ultimately downregulating the overexpression of molecular drivers of neurodegeneration.


Asunto(s)
Andrógenos/farmacología , Lesiones Traumáticas del Encéfalo/patología , Mitocondrias/efectos de los fármacos , Degeneración Nerviosa/patología , Testosterona/análogos & derivados , Animales , Masculino , Ratones Endogámicos C57BL , Mitocondrias/patología , Distribución Aleatoria , Testosterona/farmacología
17.
Epilepsy Res ; 152: 35-41, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30875635

RESUMEN

Generalized seizures trigger excessive neuronal firing that imposes large demands on the brain glucose/lactate availability and utilization, which synchronization requires an integral mitochondrial oxidative capability. We investigated whether a single convulsive crisis affects brain glucose/lactate availability and mitochondrial energy production. Adult male Wistar rats received a single injection of pentylentetrazol (PTZ, 60 mg/kg, i.p.) or saline. The cerebrospinal fluid (CSF) levels of glucose and lactate, mitochondrial respirometry, [14C]-2-deoxy-D-glucose uptake, glycogen content and cell viability in hippocampus were measured. CSF levels of glucose and lactate (mean ± SD) in control animals were 68.08 ± 11.62 mg/dL and 1.17 ± 0.32 mmol/L, respectively. Tonic-clonic seizures increased glucose levels at 10 min (96.25 ± 13.19) peaking at 60 min (113.03 ± 16.34) returning to control levels at 24 h (50.12 ± 12.81), while lactate increased at 10 min (3.23 ± 1.57) but returned to control levels at 360 min after seizures (1.58 ± 0.21). The hippocampal [14C]-2-deoxy-D-glucose uptake, glycogen content, and cell viability decreased up to 60 min after the seizures onset. Also, an uncoupling between mitochondrial oxygen consumption and ATP synthesis via FoF1-ATP synthase was observed at 10 min, 60 min and 24 h after seizures. In summary, after a convulsive seizure glucose and lactate levels immediately rise within the brain, however, considering the acute impact of this metabolic crisis, mitochondria are not able to increase energy production thereby affecting cell viability.


Asunto(s)
Glucosa/líquido cefalorraquídeo , Ácido Láctico/líquido cefalorraquídeo , Mitocondrias/metabolismo , Convulsiones/líquido cefalorraquídeo , Animales , Desoxiglucosa/metabolismo , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Etanolaminas/toxicidad , Glucógeno/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/ultraestructura , Masculino , Mitocondrias/efectos de los fármacos , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Factores de Tiempo
18.
World Neurosurg ; 122: e1028-e1036, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30414523

RESUMEN

BACKGROUND: A plethora of reactive cellular responses emerge immediately after a traumatic spinal cord injury (SCI) and may influence the patient's outcomes. We investigated whether serum concentrations of neuron-specific enolase, interleukin-6, glial-derived neurotrophic factor, and neurotrophic growth factor reflect the acute-phase responses to different etiologies of SCI and may serve as predictive biomarkers of neurologic and functional outcomes. METHODS: Fifty-two patients were admitted to the intensive care unit after SCI due to traffic accidents, falls, and firearm wounds and had blood samples collected within 48 hours and 7 days after SCI. Thirty-six healthy subjects with no history of SCI were included as controls. Neurologic and functional status was evaluated on the basis of American Spinal Injury Association and Functional Independence Measure scores over a period of 48 hours and 6 months after SCI. RESULTS: Serum NSE increased significantly 48 hours and 7 days after SCI compared with controls, while interleukin-6 increased only at 48 hours. In contrast, the neurotrophic growth factor level significantly decreased 48 hours and 7 days after SCI. Serum glial-derived neurotrophic factor level did not differ from control at any time point. Also, there was no significant difference in biomarker concentrations between the etiologies of SCI or the level of spinal injury. There were no correlations between biomarker levels at 48 hours with neurologic or functional outcomes 7 days and 6 months after SCI. CONCLUSIONS: Our results suggest expansive axonal damage coupled with an acute proinflammatory response after SCI. However, in our study biomarker concentration did not correlate with short- or long-term prognosis, such as survival rate or sensory and motor function.


Asunto(s)
Traumatismos de la Médula Espinal/sangre , Traumatismos de la Médula Espinal/terapia , Adulto , Biomarcadores/sangre , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/lesiones , Estudios de Cohortes , Femenino , Humanos , Interleucina-6/sangre , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/lesiones , Masculino , Persona de Mediana Edad , Factor de Crecimiento Nervioso/sangre , Estudios Prospectivos , Traumatismos de la Médula Espinal/diagnóstico por imagen , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/lesiones , Resultado del Tratamiento , Adulto Joven
19.
Mol Neurobiol ; 56(1): 502-512, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29725905

RESUMEN

Stroke is frequently associated with severe neurological decline and mortality, and its incidence is expected to increase due to aging population. The only available pharmacological treatment for cerebral ischemia is thrombolysis, with narrow therapeutic windows. Efforts aimed to identify new therapeutics are crucial. In this study, we look into plausible molecular and cellular targets for JM-20, a new hybrid molecule, against ischemic stroke in vivo. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) following 23 h of reperfusion. Animals treated with 8 mg/kg JM-20 (p.o., 1 h after reperfusion) showed minimal neurological impairment and lower GABA and IL-1ß levels in CSF when compared to damaged rats that received vehicle. Immunocontent of pro-survival, phosphorylated Akt protein decreased in the cortex after 24 h as result of the ischemic insult, accompanied by decreased number of NeuN+ cells in the peri-infarct cortex, cornu ammonis 1 (CA1) and dentate gyrus (DG) areas. Widespread reactive astrogliosis in both cortex and hippocampus (CA1, CA3, and DG areas) was observed 24 h post-ischemia. JM-20 prevented the activated Akt reduction, neuronal death, and astrocytes reactivity throughout the brain. Overall, the results reinforce the pharmacological potential of JM-20 as neuroprotective agent and provide important evidences about its molecular and cellular targets in this model of cerebral ischemia.


Asunto(s)
Astrocitos/patología , Benzodiazepinas/uso terapéutico , Infarto Encefálico/tratamiento farmacológico , Encéfalo/patología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Neuronas/patología , Niacina/análogos & derivados , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Benzodiazepinas/farmacología , Infarto Encefálico/líquido cefalorraquídeo , Infarto Encefálico/patología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Muerte Celular/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Giro Dentado/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Gliosis/patología , Infarto de la Arteria Cerebral Media/líquido cefalorraquídeo , Interleucina-10/líquido cefalorraquídeo , Interleucina-1beta/líquido cefalorraquídeo , Masculino , Neuronas/efectos de los fármacos , Niacina/farmacología , Niacina/uso terapéutico , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Resultado del Tratamiento , Ácido gamma-Aminobutírico/líquido cefalorraquídeo
20.
Physiol Behav ; 93(1-2): 388-94, 2008 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-17949760

RESUMEN

A wide range of data in the literature suggests that environmental enrichment has beneficial effects on various cognitive parameters in rodents. However, the magnitude of these effects and their persistence after the cessation of enrichment vary markedly across studies, with the use of different enrichment protocols probably playing a significant role in this variation. Using an open field habituation task as a paradigm, we investigate whether the duration and starting age of environmental enrichment affect the magnitude and persistence of its behavioral effects on male CF-1 albino mice. Our data shows that, at least in our protocol, (a) environmental enrichment, both after weaning and in early adulthood, decreases locomotion in an open field task, probably by increasing habituation; (b) a minimum enrichment period is necessary to induce this behavioral effect; (c) the effect of enrichment can persist at least partially for many months after its cessation; and (d) the degree of this persistence appears to be somewhat greater in animals exposed to longer durations of enrichment.


Asunto(s)
Ambiente , Conducta Exploratoria/fisiología , Habituación Psicofisiológica/fisiología , Actividad Motora/fisiología , Factores de Edad , Animales , Vivienda para Animales , Masculino , Ratones , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA