RESUMEN
ABSTRACT: Secondary kinase domain mutations in BCR::ABL1 represent the most common cause of resistance to tyrosine kinase inhibitor (TKI) therapy in patients with chronic myeloid leukemia. The first 5 approved BCR::ABL1 TKIs target the adenosine triphosphate (ATP)-binding pocket. Mutations confer resistance to these ATP-competitive TKIs and those approved for other malignancies by decreasing TKI affinity and/or increasing ATP affinity. Asciminib, the first highly active allosteric TKI approved for any malignancy, targets an allosteric regulatory pocket in the BCR::ABL1 kinase C-lobe. As a non-ATP-competitive inhibitor, the activity of asciminib is predicted to be impervious to increases in ATP affinity. Here, we report several known mutations that confer resistance to ATP-competitive TKIs in the BCR::ABL1 kinase N-lobe that are distant from the asciminib binding pocket yet unexpectedly confer in vitro resistance to asciminib. Among these is BCR::ABL1 M244V, which confers clinical resistance even to escalated asciminib doses. We demonstrate that BCR::ABL1 M244V does not impair asciminib binding, thereby invoking a novel mechanism of resistance. Molecular dynamic simulations of the M244V substitution implicate stabilization of an active kinase conformation through impact on the α-C helix as a mechanism of resistance. These N-lobe mutations may compromise the clinical activity of ongoing combination studies of asciminib with ATP-competitive TKIs.
Asunto(s)
Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Humanos , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/química , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mutación , Adenosina Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-abl/química , Niacinamida/análogos & derivados , PirazolesRESUMEN
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.
Asunto(s)
Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/química , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Benzamidas , Células Cultivadas , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Isoleucina/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Pirimidinas/farmacología , Transducción de Señal , Dominios Homologos srcRESUMEN
BACKGROUND: The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells. Monobodies are small synthetic binding proteins that can inhibit oncogene signaling in cancer cells with high selectivity upon intracellular expression. Here, we engineered monobodies targeting the BCR::ABL1 tyrosine kinase for efficient delivery by the T3SS, quantified cytosolic delivery and target engagement in cancer cells and monitored inhibition of BCR::ABL1 signaling. METHODS: In vitro assays were performed to characterize destabilized monobodies (thermal shift assay and isothermal titration calorimetry) and to assess their secretion by the T3SS. Immunoblot assays were used to study the translocation of monobodies into different cell lines and to determine the intracellular concentration after translocation. Split-Nanoluc assays were performed to understand translocation and degradation kinetics and to evaluate target engagement after translocation. Phospho flow cytometry and apoptosis assays were performed to assess the functional effects of monobody translocation into BCR:ABL1-expressing leukemia cells. RESULTS: To enable efficient translocation of the stable monobody proteins by the T3SS, we engineered destabilized mutant monobodies that retained high affinity target binding and were efficiently injected into different cell lines. After injection, the cytosolic monobody concentrations reached mid-micromolar concentrations considerably exceeding their binding affinity. We found that injected monobodies targeting the BCR::ABL1 tyrosine kinase selectively engaged their target in the cytosol. The translocation resulted in inhibition of oncogenic signaling and specifically induced apoptosis in BCR::ABL1-dependent cells, consistent with the phenotype when the same monobody was intracellularly expressed. CONCLUSION: Hence, we establish the T3SS of Y. enterocolitica as a highly efficient protein translocation method for monobody delivery, enabling the selective targeting of different oncogenic signaling pathways and providing a foundation for future therapeutic application against intracellular targets.
Asunto(s)
Citosol , Transducción de Señal , Sistemas de Secreción Tipo III , Humanos , Citosol/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Línea Celular TumoralRESUMEN
The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.
Asunto(s)
Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-fes/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Activación Enzimática , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-fes/metabolismoRESUMEN
Resistance remains the major clinical challenge for the therapy of Philadelphia chromosome-positive (Ph+) leukemia. With the exception of ponatinib, all approved tyrosine kinase inhibitors (TKIs) are unable to inhibit the common "gatekeeper" mutation T315I. Here we investigated the therapeutic potential of crizotinib, a TKI approved for targeting ALK and ROS1 in non-small cell lung cancer patients, which inhibited also the ABL1 kinase in cell-free systems, for the treatment of advanced and therapy-resistant Ph+ leukemia. By inhibiting the BCR-ABL1 kinase, crizotinib efficiently suppressed growth of Ph+ cells without affecting growth of Ph- cells. It was also active in Ph+ patient-derived long-term cultures (PD-LTCs) independently of the responsiveness/resistance to other TKIs. The efficacy of crizotinib was confirmed in vivo in syngeneic mouse models of BCR-ABL1- or BCR-ABL1T315I-driven chronic myeloid leukemia-like disease and in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). Although crizotinib binds to the ATP-binding site, it also allosterically affected the myristol binding pocket, the binding site of GNF2 and asciminib (former ABL001). Therefore, crizotinib has a seemingly unique double mechanism of action, on the ATP-binding site and on the myristoylation binding pocket. These findings strongly suggest the clinical evaluation of crizotinib for the treatment of advanced and therapy-resistant Ph+ leukemia.
Asunto(s)
Antineoplásicos/farmacología , Crizotinib/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Células Jurkat , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Mutación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismoRESUMEN
Chromatin recruitment of effector proteins involved in gene regulation depends on multivalent interaction with histone post-translational modifications (PTMs) and structural features of the chromatin fiber. Due to the complex interactions involved, it is currently not understood how effectors dynamically sample the chromatin landscape. Here, we dissect the dynamic chromatin interactions of a family of multivalent effectors, heterochromatin protein 1 (HP1) proteins, using single-molecule fluorescence imaging and computational modeling. We show that the three human HP1 isoforms are recruited and retained on chromatin by a dynamic exchange between histone PTM and DNA bound states. These interactions depend on local chromatin structure, the HP1 isoforms as well as on PTMs on HP1 itself. Of the HP1 isoforms, HP1α exhibits the longest residence times and fastest binding rates due to DNA interactions in addition to PTM binding. HP1α phosphorylation further increases chromatin retention through strengthening of multivalency while reducing DNA binding. As DNA binding in combination with specific PTM recognition is found in many chromatin effectors, we propose a general dynamic capture mechanism for effector recruitment. Multiple weak protein and DNA interactions result in a multivalent interaction network that targets effectors to a specific chromatin modification state, where their activity is required.
Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Código de Histonas/fisiología , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Homólogo de la Proteína Chromobox 5 , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Técnicas In Vitro , Cinética , Ratones , Células 3T3 NIH , Fosforilación , Unión Proteica , Imagen Individual de MoléculaRESUMEN
Biotin-based labeling strategies are widely employed to study protein-protein interactions, subcellular proteomes and post-translational modifications, as well as, used in drug discovery. While the high affinity of streptavidin for biotin greatly facilitates the capture of biotinylated proteins, it still presents a challenge, as currently employed, for the recovery of biotinylated peptides. Here we describe a strategy designated Biotinylation Site Identification Technology (BioSITe) for the capture of biotinylated peptides for LC-MS/MS analyses. We demonstrate the utility of BioSITe when applied to proximity-dependent labeling methods, APEX and BioID, as well as biotin-based click chemistry strategies for identifying O-GlcNAc-modified sites. We demonstrate the use of isotopically labeled biotin for quantitative BioSITe experiments that simplify differential interactome analysis and obviate the need for metabolic labeling strategies such as SILAC. Our data also highlight the potential value of site-specific biotinylation in providing spatial and topological information about proteins and protein complexes. Overall, we anticipate that BioSITe will replace the conventional methods in studies where detection of biotinylation sites is important.
Asunto(s)
Acetilglucosamina/metabolismo , Biotina/química , Química Clic/métodos , Péptidos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Estreptavidina/química , Acetilglucosamina/química , Secuencia de Aminoácidos , Animales , Anticuerpos Inmovilizados/química , Linfocitos B/química , Biotinilación , Línea Celular , Cromatografía Liquida , Células HEK293 , Humanos , Ratones , Péptidos/química , Proteolisis , Espectrometría de Masas en TándemRESUMEN
The constituent SH3, SH2, and kinase domains of the Abl kinase regulatory core can adopt an assembled (inactive) or a disassembled (active) conformation. We show that this assembly state strictly correlates with the conformation of the kinase activation loop induced by a total of 14 ATP site ligands, comprising all FDA-approved Bcr-Abl inhibiting drugs. The disassembly of the core by certain (type II) ligands can be explained by an induced push on the kinase N-lobe via A- and P-loop toward the SH3 domain. A similar sized P-loop motion is expected during nucleotide binding and release, which would be impeded in the assembled state, in agreement with its strongly reduced kinase activity.
Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Adenosina Trifosfato/química , Sitios de Unión , Ligandos , Modelos Moleculares , Conformación Proteica , Proteínas Proto-Oncogénicas c-abl/químicaRESUMEN
Leukemias expressing constitutively activated mutants of ABL1 tyrosine kinase (BCR-ABL1, TEL-ABL1, NUP214-ABL1) usually contain at least 1 normal ABL1 allele. Because oncogenic and normal ABL1 kinases may exert opposite effects on cell behavior, we examined the role of normal ABL1 in leukemias induced by oncogenic ABL1 kinases. BCR-ABL1-Abl1(-/-) cells generated highly aggressive chronic myeloid leukemia (CML)-blast phase-like disease in mice compared with less malignant CML-chronic phase-like disease from BCR-ABL1-Abl1(+/+) cells. Additionally, loss of ABL1 stimulated proliferation and expansion of BCR-ABL1 murine leukemia stem cells, arrested myeloid differentiation, inhibited genotoxic stress-induced apoptosis, and facilitated accumulation of chromosomal aberrations. Conversely, allosteric stimulation of ABL1 kinase activity enhanced the antileukemia effect of ABL1 tyrosine kinase inhibitors (imatinib and ponatinib) in human and murine leukemias expressing BCR-ABL1, TEL-ABL1, and NUP214-ABL1. Therefore, we postulate that normal ABL1 kinase behaves like a tumor suppressor and therapeutic target in leukemias expressing oncogenic forms of the kinase.
Asunto(s)
Crisis Blástica/genética , Genes Supresores de Tumor , Genes abl , Leucemia Experimental/genética , Leucemia Mieloide de Fase Crónica/genética , Proteínas Oncogénicas v-abl/fisiología , Proteínas de Fusión Oncogénica/fisiología , Proteínas Proto-Oncogénicas c-abl/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/enzimología , Crisis Blástica/patología , División Celular/efectos de los fármacos , Línea Celular Tumoral , Citostáticos/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Imidazoles/farmacología , Imidazoles/uso terapéutico , Leucemia Experimental/tratamiento farmacológico , Leucemia Experimental/enzimología , Leucemia Experimental/patología , Leucemia Mieloide de Fase Crónica/tratamiento farmacológico , Leucemia Mieloide de Fase Crónica/enzimología , Leucemia Mieloide de Fase Crónica/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Proteínas Oncogénicas v-abl/antagonistas & inhibidores , Proteínas Oncogénicas v-abl/genética , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Estrés Oxidativo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-abl/genética , Piridazinas/farmacología , Piridazinas/uso terapéutico , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genéticaRESUMEN
Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl.
Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/química , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/inmunología , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Monoclonales de Origen Murino/farmacología , Línea Celular Tumoral , Proteínas de Fusión bcr-abl/inmunología , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Dominios Homologos srcRESUMEN
In this issue of Blood, Appelmann et al provide evidence for prolonged survival and prevention of resistance in a mouse model of Philadelphia chromosomepositive (Ph+) acute lymphoblastic leukemia (ALL) by combined targeting of the BCR-ABL kinase and Janus kinase 2 (JAK2) with dasatinib and ruxolitinib, respectively.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quinasas Janus/antagonistas & inhibidores , Recurrencia Local de Neoplasia/tratamiento farmacológico , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Femenino , Humanos , MasculinoRESUMEN
Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of PD.
Asunto(s)
Enfermedad de Parkinson/enzimología , Proteínas Proto-Oncogénicas c-abl/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosforilación , Proteolisis , Proteínas Proto-Oncogénicas c-abl/genética , alfa-Sinucleína/genéticaRESUMEN
Constitutive activation of the non-receptor tyrosine kinase c-Abl (cellular Abelson tyrosine protein kinase 1, Abl1) in the Bcr (breakpoint cluster region)-Abl1 fusion oncoprotein is the molecular cause of chronic myeloid leukaemia (CML). Recent studies have indicated that an interaction between the SH2 (Src-homology 2) domain and the N-lobe (N-terminal lobe) of the c-Abl kinase domain (KD) has a critical role in leukaemogenesis [Grebien et al. (2011) Cell 147, 306-319; Sherbenou et al. (2010) Blood 116, 3278-3285]. To dissect the structural basis of this phenomenon, we studied c-Abl constructs comprising the SH2 and KDs in vitro. We present a crystal structure of an SH2-KD construct bound to dasatinib, which contains the relevant interface between the SH2 domain and the N-lobe of the KD. We show that the presence of the SH2 domain enhances kinase activity moderately and that this effect depends on contacts in the SH2/N-lobe interface and is abrogated by specific mutations. Consistently, formation of the interface decreases slightly the association rate of imatinib with the KD. That the effects are small compared with the dramatic in vivo consequences suggests an important function of the SH2-N-lobe interaction might be to help disassemble the auto-inhibited conformation of c-Abl and promote processive phosphorylation, rather than substantially stimulate kinase activity.
Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/metabolismo , Dominios Homologos src , Benzamidas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dasatinib , Humanos , Mesilato de Imatinib , Fosforilación , Piperazinas/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Pirimidinas/metabolismo , Especificidad por Sustrato , Tiazoles/metabolismoRESUMEN
The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, termed monobodies, for the N- and C-terminal SH2 domains of SHP2. Intracellular expression followed by interactome analysis showed that the monobodies are essentially monospecific to SHP2. Two crystal structures revealed that the monobodies occupy the phosphopeptide-binding sites of the SH2 domains and thus can serve as competitors of SH2-phosphotyrosine interactions. Surprisingly, the segments of both monobodies that bind to the peptide-binding grooves run in the opposite direction to that of canonical phosphotyrosine peptides, which may contribute to their exquisite specificity. When expressed in cells, monobodies targeting the N-SH2 domain disrupted the interaction of SHP2 with its upstream activator, the Grb2-associated binder 2 adaptor protein, suggesting decoupling of SHP2 from the BCR-ABL protein complex. Inhibition of either N-SH2 or C-SH2 was sufficient to inhibit two tyrosine phosphorylation events that are critical for SHP2 catalytic activity and to block ERK activation. In contrast, targeting the N-SH2 or C-SH2 revealed distinct roles of the two SH2 domains in downstream signaling, such as the phosphorylation of paxillin and signal transducer and activator of transcription 5. Our results delineate a hierarchy of function for the SH2 domains of SHP2 and validate monobodies as potent and specific antagonists of protein-protein interactions in cancer cells.
Asunto(s)
Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Transformación Celular Neoplásica , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/genética , Células HEK293 , Humanos , Células K562 , Modelos Moleculares , Biblioteca de Péptidos , Péptidos/química , Péptidos/genética , Péptidos/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal , Dominios Homologos srcRESUMEN
In this article, we are reviewing the molecular mechanisms that lead to kinase inhibitor resistance. As the oncogenic BCR-ABL kinase is the target of the first approved small-molecule kinase inhibitor imatinib, we will first focus on the structural and mechanistic basis for imatinib resistance. We will then show ways how next generations of BCR-ABL inhibitors and alternative targeting strategies have helped to offer effective treatment options for imatinib-resistant patients. Based on these insights, we discuss commonalities and further mechanisms that lead to resistance to other kinase inhibitors in solid tumors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Benzamidas/química , Benzamidas/farmacología , Benzamidas/uso terapéutico , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/genética , Humanos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Modelos Moleculares , Estructura Molecular , Piperazinas/química , Piperazinas/farmacología , Piperazinas/uso terapéutico , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/uso terapéuticoRESUMEN
The NUP214-ABL1 fusion protein is a constitutively active protein tyrosine kinase that is found in 6% of patients with T-cell acute lymphoblastic leukemia and that promotes proliferation and survival of T-lymphoblasts. Although NUP214-ABL1 is sensitive to ABL1 kinase inhibitors, development of resistance to these compounds is a major clinical problem, underlining the need for additional drug targets in the sparsely studied NUP214-ABL1 signaling network. In this work, we identify and validate the SRC family kinase LCK as a protein whose activity is absolutely required for the proliferation and survival of T-cell acute lymphoblastic leukemia cells that depend on NUP214-ABL1 activity. These findings underscore the potential of SRC kinase inhibitors and of the dual ABL1/SRC kinase inhibitors dasatinib and bosutinib for the treatment of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. In addition, we used mass spectrometry to identify protein interaction partners of NUP214-ABL1. Our results strongly support that the signaling network of NUP214-ABL1 is distinct from that previously reported for BCR-ABL1. Moreover, we found that three NUP214-ABL1-interacting proteins, MAD2L1, NUP155, and SMC4, are strictly required for the proliferation and survival of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia cells. In conclusion, this work identifies LCK, MAD2L1, NUP155 and SMC4 as four new potential drug targets in NUP214-ABL1-positive T-cell acute lymphoblastic leukemia.
Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Humanos , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Interferencia de ARN , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismoRESUMEN
Constitutive activation of STAT5 is critical for the maintenance of chronic myeloid leukemia (CML) characterized by the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (TKIs) for the STAT5-activating kinase JAK2 have been discussed as a treatment option for CML patients. Using murine leukemia models combined with inducible ablation of JAK2, we show JAK2 dependence for initial lymphoid transformation, which is lost once leukemia is established. In contrast, initial myeloid transformation and leukemia maintenance were independent of JAK2. Nevertheless, several JAK2 TKIs induced apoptosis in BCR-ABL(+) cells irrespective of the presence of JAK2. This is caused by the previously unknown direct 'off-target' inhibition of BCR-ABL. Cellular and enzymatic analyses suggest that BCR-ABL phosphorylates STAT5 directly. Our findings suggest uncoupling of the canonical JAK2-STAT5 module upon BCR-ABL expression, thereby making JAK2 targeting dispensable. Thus, attempts to pharmacologically target STAT5 in BCR-ABL(+) diseases need to focus on STAT5 itself.
Asunto(s)
Proteínas de Fusión bcr-abl/metabolismo , Janus Quinasa 2/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Animales , Antineoplásicos/farmacología , Benzamidas , Línea Celular Tumoral , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Células HEK293 , Humanos , Mesilato de Imatinib , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/deficiencia , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piperazinas/farmacología , Pirimidinas/farmacología , Factor de Transcripción STAT5/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Células U937RESUMEN
Cancer is a leading cause of death worldwide. Several targeted anticancer drugs entered clinical practice and improved survival of cancer patients with selected tumor types, but therapy resistance and metastatic disease remains a challenge. A major class of targeted anticancer drugs are therapeutic antibodies, but their use is limited to extracellular targets. Hence, alternative binding scaffolds have been investigated for intracellular use and better tumor tissue penetration. Among those, monobodies are small synthetic protein binders that were engineered to bind with high affinity and selectivity to central intracellular oncoproteins and inhibit their signaling. Despite their use as basic research tools, the potential of monobodies as protein therapeutics remains to be explored. In particular, the pharmacological properties of monobodies, including plasma stability, toxicity and pharmacokinetics have not been investigated. Here, we show that monobodies have high plasma stability, are well-tolerated in mice, but have a short half-life in vivo due to rapid renal clearance. Therefore, we engineered monobody fusions with an albumin-binding domain (ABD), which showed enhanced pharmacological properties without affecting their target binding: We found that ABD-monobody fusions display increased stability in mouse plasma. Most importantly, ABD-monobodies have a dramatically prolonged in vivo half-life and are not rapidly excreted by renal clearance, remaining in the blood significantly longer, while not accumulating in specific internal organs. Our results demonstrate the promise and versatility of monobodies to be developed into future therapeutics for cancer treatment. We anticipate that monobodies may be able to extend the spectrum of intracellular targets, resulting in a significant benefit to patient outcome.