Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 48(15): 3929-3932, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527085

RESUMEN

To reveal the three-dimensional microstructure and calcium dynamics of human heart organoids (hHOs), we developed a dual-modality imaging system combining the advantages of optical coherence tomography (OCT) and fluorescence microscopy. OCT provides high-resolution volumetric structural information, while fluorescence imaging indicates the electrophysiology of the hHOs' beating behavior. We verified that concurrent OCT motion mode (M-mode) and calcium imaging retrieved the same beating pattern from the heart organoids. We further applied dynamic contrast OCT (DyC-OCT) analysis to strengthen the verification and localize the beating clusters inside the hHOs. This imaging platform provides a powerful tool for studying and assessing hHOs in vitro, with potential applications in disease modeling and drug screening.


Asunto(s)
Calcio , Corazón , Humanos , Corazón/diagnóstico por imagen , Microscopía Fluorescente , Tomografía de Coherencia Óptica/métodos , Organoides/diagnóstico por imagen
2.
Commun Biol ; 7(1): 278, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448627

RESUMEN

Dynamic contrast optical coherence tomography (DyC-OCT), an emerging imaging method, utilizes fluctuation patterns in OCT signals to enhance contrast, thereby enabling non-invasive label-free volumetric live cell imaging. In this mini review, we explain the core concepts behind DyC-OCT image formation and its system configurations, serving as practical guidance for future DyC-OCT users. Subsequently, we explore its applications in delivering high-quality, contrast-enhanced images of cellular morphology, as well as in monitoring changes in cellular activity/viability assay experiments.


Asunto(s)
Tomografía de Coherencia Óptica , Supervivencia Celular
3.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370686

RESUMEN

Non-invasive, low intensity focused ultrasound (FUS) is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported. The brain's ability to provide targeted blood flow to electrically active regions involve a multitude of non-neuronal cell types and signaling pathways in the cerebral vasculature; an open question is whether persistent effects can be attributed, at least partly, to vascular mechanisms. Using a novel in vivo optical approach, we found that microvascular responses, unlike larger vessels which prior investigations have explored, exhibit persistent dilation. This finding and approach offers a heretofore unseen aspect of the effects of FUS in vivo and indicate that concurrent changes in neurovascular function may partially underly persistent neuromodulatory effects.

4.
Biomed Opt Express ; 14(8): 3881-3898, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37799687

RESUMEN

Motion artifacts, from such sources as heartbeats, respiration, or peristalsis, often degrade microscopic images or videos of live subjects. We have developed a method using circular optical coherence tomography (OCT) scans to track the transverse and axial motion of biological samples at speeds ranging from several micrometers per second to several centimeters per second. We achieve fast and high-precision measurements of the magnitude and direction of the sample's motion by adaptively controlling the circular scan pattern settings and applying interframe and intraframe analyses. These measurements are the basis of active motion compensation via feedback control for future in vivo microscopic and macroscopic imaging applications.

5.
Cell Stem Cell ; 30(9): 1148-1165.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683602

RESUMEN

Naive human pluripotent stem cells have the remarkable ability to self-organize into blastocyst-like structures ("blastoids") that model lineage segregation in the pre-implantation embryo. However, the extent to which blastoids can recapitulate the defining features of human post-implantation development remains unexplored. Here, we report that blastoids cultured on thick three-dimensional (3D) extracellular matrices capture hallmarks of early post-implantation development, including epiblast lumenogenesis, rapid expansion and diversification of trophoblast lineages, and robust invasion of extravillous trophoblast cells by day 14. Extended blastoid culture results in the localized activation of primitive streak marker TBXT and the emergence of embryonic germ layers by day 21. We also show that the modulation of WNT signaling alters the balance between epiblast and trophoblast fates in post-implantation blastoids. This work demonstrates that 3D-cultured blastoids offer a continuous and integrated in vitro model system of human embryonic and extraembryonic development from pre-implantation to early gastrulation stages.


Asunto(s)
Implantación del Embrión , Gastrulación , Humanos , Embrión de Mamíferos , Blastocisto , Células Epiteliales
6.
Biosens Bioelectron ; 207: 114136, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35325716

RESUMEN

Organoids play an increasingly important role as in vitro models for studying organ development, disease mechanisms, and drug discovery. Organoids are self-organizing, organ-like three-dimensional (3D) cell cultures developing organ-specific cell types and functions. Recently, three groups independently developed self-assembling human heart organoids (hHOs) from human pluripotent stem cells (hPSCs). In this study, we utilized a customized spectral-domain optical coherence tomography (SD-OCT) system to characterize the growth of hHOs. Development of chamber structures and beating patterns of the hHOs were observed via OCT and calcium imaging. We demonstrated the capability of OCT to produce 3D images in a fast, label-free, and non-destructive manner. The hHOs formed cavities of various sizes, and complex interconnections were observed as early as on day 4 of differentiation. The hHOs models and the OCT imaging system showed promising insights as an in vitro platform for investigating heart development and disease mechanisms.


Asunto(s)
Técnicas Biosensibles , Células Madre Pluripotentes , Diferenciación Celular , Humanos , Organoides , Tomografía de Coherencia Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA