Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(4): 342-353, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507355

RESUMEN

Pathogens have co-evolved with mosquitoes to optimize transmission to hosts. Mosquito salivary-gland extract is known to modulate host immune responses and facilitate pathogen transmission, but the underlying molecular mechanisms of this have remained unknown. In this study, we identified and characterized a prominent 15-kilodalton protein, LTRIN, obtained from the salivary glands of the mosquito Aedes aegypti. LTRIN expression was upregulated in blood-fed mosquitoes, and LTRIN facilitated the transmission of Zika virus (ZIKV) and exacerbated its pathogenicity by interfering with signaling through the lymphotoxin-ß receptor (LTßR). Mechanically, LTRIN bound to LTßR and 'preferentially' inhibited signaling via the transcription factor NF-κB and the production of inflammatory cytokines by interfering with the dimerization of LTßR during infection with ZIKV. Furthermore, treatment with antibody to LTRIN inhibited mosquito-mediated infection with ZIKV, and abolishing LTßR potentiated the infectivity of ZIKV both in vitro and in vivo. This study provides deeper insight into the transmission of mosquito-borne diseases in nature and supports the therapeutic potential of inhibiting the action of LTRIN to disrupt ZIKV transmission.


Asunto(s)
Aedes/virología , Proteínas de Insectos/metabolismo , Saliva/metabolismo , Infección por el Virus Zika/transmisión , Virus Zika/patogenicidad , Animales , Humanos , Receptor beta de Linfotoxina/inmunología , Receptor beta de Linfotoxina/metabolismo , Ratones , Mosquitos Vectores/química , Mosquitos Vectores/inmunología , Mosquitos Vectores/metabolismo , Saliva/química
2.
Chemistry ; 30(14): e202303552, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38158581

RESUMEN

CO2 is a greenhouse gas that contributes to environmental deterioration; however, it can also be utilized as an abundant C1 resource for the production of valuable chemicals. Solar-driven photoelectrocatalytic (PEC) CO2 utilization represents an advanced technology for the resourcing of CO2 . The key to achieving PEC CO2 utilization lies in high-performance semiconductor photoelectrodes. Si-based photoelectrodes have attracted increasing attention in the field of PEC CO2 utilization due to their suitable band gap (1.1 eV), high carrier mobility, low cost, and abundance on Earth. There are two pathways to PEC CO2 utilization using Si-based photoelectrodes: direct reduction of CO2 into small molecule fuels and chemicals, and fixation of CO2 with organic substrates to generate high-value chemicals. The efficiency and product selectivity of PEC CO2 utilization depends on the structures of the photoelectrodes as well as the composition, morphology, and size of the catalysts. In recent years, significant and influential progress has been made in utilizing Si-based photoelectrodes for PEC CO2 utilization. This review summarizes the latest research achievements in Si-based PEC CO2 utilization, with a particular emphasis on the mechanistic understanding of CO2 reduction and fixation, which will inspire future developments in this field.

3.
Inorg Chem ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138609

RESUMEN

Low-temperature anticounterfeiting technologies play a crucial role in ensuring the authenticity and integrity of temperature-sensitive products such as vaccines, pharmaceuticals, and food items. In this work, a low-temperature anticounterfeiting route based on the differentiated photoluminescence (PL), PersL, and thermally stimulated luminescence (TSL) behaviors of metal halide perovskite, pure CsCdCl3, and CsCdCl3:10% Te4+ is proposed. The CsCdCl3 host exhibits pronounced color shifts, encompassing PL, PersL, and TSL behaviors, ranging from blue to yellow and orange as the temperature rises from 100 K to room temperature. This color change is attributed to a change in the luminous center (from the D3d octahedron to the C3v octahedron). Conversely, the addition of Te4+ as the luminescence center inhibits the matrix emission, maintains the characteristic orange emission of Te4+, and regulates the trap distribution of the matrix at low temperature and the TL luminescence intensity. This work highlights the significant promise of CsCdCl3:10% Te4+ and CsCdCl3 phosphors as innovative low-temperature anticounterfeiting technologies, especially for cold-chain vaccine safety monitoring.

4.
Inorg Chem ; 63(1): 842-851, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38100035

RESUMEN

Rapid and sensitive electrochemical determination of trace carcinogenic Cr(VI) pollutants remains an urgent and important task, which requires the development of active sensing materials. Herein, four cases of reduced phosphomolybdates with formulas of the (H2bib)3[Zn(H2PO4)]2{Mn[P4Mo6O31H7]2}·6H2O (1), (H2bib)2[Na(H2O)]2[Mn(H2O)]2{Mn[P4Mo6O31H6]2}·5H2O (2), (H2bib)3[Mo2(µ2-O)2(H2O)4]2{Ni[P4Mo6O31H2]2}·4H2O (3), and (H2bib)2{Ni[P4Mo6O31H9]2}·9H2O (4) (bib = 4,4'-bis(1-imidazolyl)-biphenyl) were hydrothermally synthesized under the guidance of a bridging component strategy, which function as effective electrochemical sensors to detect trace Cr(VI). The difference of hybrids 1-4 is in the inorganic moiety, in which the reduced phosphomolybdates {M[P4MoV6O31]2} (M{P4Mo6}2) exhibited different arrangements bridged by different cationic components ({Zn(H2PO4)} subunit for 1, [Mn2(H2O)2]4+ dimer for 2, and [MoV2(µ2-O)2(H2O)4]6+ for 3). As a result, hybrids 1 and 3 display noticeable Cr(VI) detection activity with low detection limits of 14.3 nM (1.48 ppb) for 1 and 6.61 nM (0.69 ppb) for 3 and high sensitivities of 97.3 and 95.3 µA·mM-1, respectively, which are much beyond the World Health Organization's detection threshold (0.05 ppm) and superior to those of the contrast samples (inorganic Mn{P4Mo6}2 salt and hybrid 4), even the most reported noble-metal catalysts. This work supplies a prospective pathway to build effective electrochemical sensors based on phosphomolybdates for environmental pollutant treatment.

5.
Cell Mol Life Sci ; 80(6): 171, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261512

RESUMEN

Imbalance of bone homeostasis induces bone degenerative diseases such as osteoporosis. Hedgehog (Hh) signaling plays critical roles in regulating the development of limb and joint. However, its unique role in bone homeostasis remained largely unknown. Here, we found that canonical Hh signaling pathway was gradually augmented during osteoclast differentiation. Genetic inactivation of Hh signaling in osteoclasts, using Ctsk-Cre;Smof/f conditional knockout mice, disrupted both osteoclast formation and subsequent osteoclast-osteoblast coupling. Concordantly, either Hh signaling inhibitors or Smo/Gli2 knockdown stunted in vitro osteoclast formation. Mechanistically, Hh signaling positively regulated osteoclast differentiation via transactivation of Traf6 and stabilization of TRAF6 protein. Then, we identified connective tissue growth factor (CTGF) as an Hh-regulatory bone formation-stimulating factor derived from osteoclasts, whose loss played a causative role in osteopenia seen in CKO mice. In line with this, recombinant CTGF exerted mitigating effects against ovariectomy induced bone loss, supporting a potential extension of local rCTGF treatment to osteoporotic diseases. Collectively, our findings firstly demonstrate that Hh signaling, which dictates osteoclast differentiation and osteoclast-osteoblast coupling by regulating TRAF6 and CTGF, is crucial for maintaining bone homeostasis, shedding mechanistic and therapeutic insights into the realm of osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteoporosis , Femenino , Ratones , Animales , Osteoclastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Transducción de Señal , Osteoporosis/genética , Osteoporosis/metabolismo , Homeostasis , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Diferenciación Celular , Resorción Ósea/metabolismo
6.
J Dairy Sci ; 107(1): 625-640, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709032

RESUMEN

Excessive free fatty acid (FFA) oxidation and related metabolism are the major cause of oxidative stress and liver injury in dairy cows during the early postpartum period. In nonruminants, activation of transcription factor EB (TFEB) can improve cell damage and reduce the overproduction of mitochondrial reactive oxygen species. As a downstream target of TFEB, peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α, gene name PPARGC1A) is a critical regulator of oxidative metabolism. Nuciferine (Nuc), a major bioactive compound isolated from the lotus leaf, has been reported to possess hepatoprotective activity. Therefore, the objective of this study was to investigate whether Nuc could protect bovine hepatocytes from FFA-induced lipotoxicity and the underlying mechanisms. A mixture of FFA was diluted in RPMI-1640 basic medium containing 2% low fatty acid bovine serum albumin to treat hepatocytes. Bovine hepatocytes were isolated from newborn calves and treated with various concentrations of FFA mixture (0, 0.3, 0.6, or 1.2 mM) or Nuc (0, 25, 50, or 100 µM), as well as co-treated with 1.2 mM FFA and different concentrations of Nuc. For the experiments of gene silencing, bovine hepatocytes were transfected with small interfering RNA targeted against TFEB or PPARGC1A for 36 h followed by treatment with 1.2 mM FFA for 12 h in presence or absence of 100 µΜ Nuc. The results revealed that FFA treatment decreased protein abundance of nuclear TFEB, cytosolic TFEB, total (t)-TFEB, lysosome-associated membrane protein 1 (LAMP1) and PGC-1α and mRNA abundance of LAMP1, but increased phosphorylated (p)-TFEB. In addition, FFA treatment increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) and decreased the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in bovine hepatocytes. Moreover, FFA administration enhanced the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactose dehydrogenase (LDH) in the medium of FFA-treated hepatocytes, but reduced the content of urea. In FFA-treated bovine hepatocytes, Nuc administration increased TFEB nuclear localization and the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, decreased the contents of MDA and H2O2 and the protein abundance of p-TFEB, and enhanced the activities of CAT and GSH-Px in a dose-dependent manner. Consistently, Nuc administration reduced the activities of ALT, AST, and LDH and increased the content of urea in the medium of FFA-treated hepatocytes. Importantly, knockdown of TFEB reduced the protein abundance of p-TFEB, t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, and impeded the beneficial effects of Nuc on FFA-induced oxidative damage in bovine hepatocytes. In addition, PPARGC1A silencing did not alter Nuc-induced nuclear translocation of TFEB, increase of the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, or decrease of the protein abundance of p-TFEB, whereas it partially reduced the beneficial effects of Nuc on FFA-caused oxidative injury. Taken together, Nuc exerts protective effects against FFA-induced oxidative damage in bovine hepatocytes through activation of the TFEB/PGC-1α signaling pathway.


Asunto(s)
Aporfinas , Ácidos Grasos no Esterificados , PPAR gamma , Femenino , Bovinos , Animales , Ácidos Grasos no Esterificados/farmacología , PPAR gamma/metabolismo , Peróxido de Hidrógeno , Hepatocitos/metabolismo , Estrés Oxidativo , Factores de Transcripción/genética , Glutatión Peroxidasa/metabolismo , ARN Mensajero/metabolismo , Urea
7.
J Dairy Sci ; 107(5): 3269-3279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37977448

RESUMEN

The aim of the present study was to investigate the activity of AMPK and mTORC1 as well as TFEB transcriptional activity and autophagy-lysosomal function in the liver of dairy cows with mild fatty liver (FL) and cows with moderate FL. Liver and blood samples were collected from healthy dairy cows (n = 10; hepatic triglyceride content <1% wet weight) and cows with mild FL (n = 10; 1% ≤ hepatic triglyceride content < 5% wet weight) or moderate FL (n = 10; 5% ≤ hepatic triglyceride content < 10% wet weight) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9). Blood parameters were determined using a Hitachi 3130 autoanalyzer with commercially available kits. Protein and mRNA abundances were determined using western blotting and quantitative real-time PCR, respectively. Activities of calcineurin and ß-N-acetylglucosaminidase were measured with commercial assay kits. Data were analyzed using one-way ANOVA with subsequent Bonferroni correction. Blood concentrations of glucose were lower in moderate FL cows (3.03 ± 0.21 mM) than in healthy (3.71 ± 0.14 mM) and mild FL cows (3.76 ± 0.14 mM). Blood concentrations of ß-hydroxybutyrate (BHB, 1.37 ± 0.15 mM in mild FL, 1.88 ± 0.17 mM in moderate FL) and free fatty acids (FFA, 0.69 ± 0.05 mM in mild FL, 0.96 ± 0.09 mM in moderate FL) were greater in FL cows than in healthy cows (BHB, 0.76 ± 0.12 mM; FFA, 0.42 ± 0.04 mM). Compared with healthy cows, phosphorylation of AMPK was greater and phosphorylation of its downstream target acetyl-CoA carboxylase 1 was lower in cows with mild and moderate FL. Phosphorylation of mTOR was lower in cows with mild FL compared with healthy cows. In cows with moderate FL, phosphorylation of mTOR and its downstream effectors was greater than in healthy cows and cows with mild FL. The mRNA abundance of TFEB was downregulated in cows with moderate FL compared with healthy cows and mild FL cows. In mild FL cows, the mRNA and protein abundances of TFEB were greater than in healthy cows. Compared with healthy cows, the mRNA abundances of autophagy markers sequestosome-1 and microtubule-associated protein 1 light chain 3-II, and the protein and mRNA abundances of lysosome-associated membrane protein 1 and cathepsin D were increased in mild FL cows but decreased in moderate FL cows. Compared with healthy cows, the mRNA abundance of mucolipin 1 and activities of ß-N-acetylglucosaminidase and calcineurin were higher in cows with mild FL but lower in cows with moderate FL. These data demonstrate that hepatic AMPK signaling pathway, TFEB transcriptional activity, and autophagy-lysosomal function are increased in dairy cows with mild FL; the hepatic mTORC1 signaling pathway is inhibited in mild FL cows but activated in moderate FL cows; and activities of AMPK and TFEB as well as autophagy-lysosomal function are impaired in moderate FL cows.

8.
J Dairy Sci ; 107(6): 4045-4055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246558

RESUMEN

During the periparturient period, both oxidative stress, and inflammation of adipose tissue are considered high risk factors for metabolic disorder of dairy cows. Oxidative stress can activate transcription factor nuclear factor kappa B (NF-κB), which lead to the upregulation of genes involved in inflammatory pathways. Thioredoxin-2 (TXN2) is a mitochondrial protein that regulates cellular redox by suppressing mitochondrial reactive oxygen species (ROS) generation in nonruminant, whereas the function of TXN2 in bovine adipocytes was unclear. Thus, the objective of this study was to evaluate how or by which mechanisms TXN2 regulates oxidative stress and NF-κB signaling pathway in bovine adipocytes. Bovine pre-adipocytes isolated from 5 healthy Holstein cows were differentiated and used for (1) treatment with different concentrations of hydrogen peroxide (H2O2; 0, 25, 50, 100, 200, or 400 µM) for 2 h; (2) transfection with or without TXN2 small interfering RNA (si-TXN2) for 48 h and then treated with or without 200 µM H2O2 for 2 h; (3) transfection with scrambled negative control siRNA (si-control) or si-TXN2 for 48 h, and then treatment with or without 10 mM N-acetylcysteine (NAC) for 2 h; (4) transfection with or without TXN2-overexpressing plasmid for 48 h and then treatment with or without 200 µM H2O2 for 2 h. High concentrations of H2O2 (200 and 400 µM) decreased protein and mRNA abundance of TXN2, reduced total antioxidant capacity (T-AOC) and ATP content in adipocytes. Moreover, 200 and 400 µM H2O2 reduced protein abundance of inhibitor of kappa B α (IκBα), increased phosphorylation of NF-κB and upregulated mRNA abundance of tumor necrosis factor-α (TNFA) and interleukin-1B (IL-1B), suggesting that H2O2-induced oxidative stress and activated NF-κB signaling pathway. Silencing of TXN2 increased intracellular ROS content, phosphorylation of NF-κB and mRNA abundance of TNFA and IL-1B, decreased ATP content and protein abundance of IκBα in bovine adipocytes. Knockdown of TXN2 aggravated H2O2-induced oxidative stress and inflammation. In addition, treatment with antioxidant NAC ameliorated oxidative stress and inhibited NF-κB signaling pathway in adipocytes transfected with si-TXN2. In bovine adipocytes treated with H2O2, overexpression of TXN2 reduced the content of ROS and elevated the content of ATP and T-AOC. Overexpression of TXN2 alleviated H2O2-induced inflammatory response in adipocytes, as demonstrated by decreased expression of phosphorylated NF-κB, TNFA, IL-1B, as well as increased expression of IκBα. Furthermore, the protein and mRNA abundance of TXN2 was lower in adipose tissue of dairy cows with clinical ketosis. Overall, our studies contribute to the understanding of the role of TXN2 in adipocyte oxidative stress and inflammatory response.


Asunto(s)
Adipocitos , Peróxido de Hidrógeno , FN-kappa B , Estrés Oxidativo , Transducción de Señal , Tiorredoxinas , Animales , Bovinos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Femenino
9.
J Am Chem Soc ; 145(1): 207-215, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36534963

RESUMEN

Many quantum magnetic materials suffer from structural imperfections. The effects of structural disorder on bulk properties are difficult to assess systematically from a chemical perspective due to the complexities of chemical synthesis. The recently reported S = 1/2 kagome lattice antiferromagnet, (CH3NH3)2NaTi3F12, 1-Ti, with highly symmetric kagome layers and disordered interlayer methylammonium cations, shows no magnetic ordering down to 0.1 K. To study the impact of structural disorder in the titanium fluoride kagome compounds, (CH3NH3)2KTi3F12, 2-Ti, was prepared. It presents no detectable structural disorder and only a small degree of distortion of the kagome lattice. The methylammonium disorder model of 1-Ti and order in 2-Ti were confirmed by atomic-resolution transmission electron microscopy. The antiferromagnetic interactions and band structures of both compounds were calculated based on spin-polarized density functional theory and support the magnetic structure analysis. Three spin-glass-like (SGL) transitions were observed in 2-Ti at 0.5, 1.4, and 2.3 K, while a single SGL transition can be observed in 1-Ti at 0.8 K. The absolute values of the Curie-Weiss temperatures of both 1-Ti (-139.5(7) K) and 2-Ti (-83.5(7) K) are larger than the SGL transition temperatures, which is indicative of geometrically frustrated spin glass (GFSG) states. All the SGL transitions are quenched with an applied field >0.1 T, which indicates novel magnetic phases emerge under small applied magnetic fields. The well-defined structure and the lack of structural disorder in 2-Ti suggest that 2-Ti is an ideal model compound for studying GFSG states and the potential transitions between spin liquid and GFSG states.

10.
J Chem Inf Model ; 63(8): 2409-2418, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37018130

RESUMEN

Hydrogen sulfide (H2S) plays a critical role in numerous physiological and pathological processes, but an abnormal level of H2S in living systems can cause various diseases. To detect the level of endogenous H2S in a complicated biological system, the luminous mechanism of "turn-on" probe for H2S monitoring has been deeply explored through the simulation of excited-state dynamic processes, and the effect of different geometric modifications on optical properties has been minutely investigated based on molecular modeling. TD-DFT calculations demonstrate that line-type π-expanding in the molecular skeleton is beneficial for improving two-photon absorption (TPA) ability, but it can give rise to extremely large geometric relaxation, going against fluorescence emission. It is an effective way to suppress molecular skeleton scissoring vibration by introducing strong electron-withdrawing substituent groups (F, Cl, Br, CN) in benzopyran, and these compounds also have superior TPA properties in NIR. One of the potential materials in the application of biological imaging and H2S detection has been obtained, which simultaneously possesses easily distinguished spectra (with a Stokes shift as large as 77 nm), high luminous efficiency (with a quantum yield up to 20.07%), and large TPA cross section (952 GM at 950 nm).


Asunto(s)
Sulfuro de Hidrógeno , Humanos , Colorantes Fluorescentes , Fotones , Modelos Teóricos , Células HeLa
11.
J Chem Inf Model ; 63(14): 4392-4404, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37418660

RESUMEN

Two-photon photodynamic therapy (TP-PDT), as a treatment technology with deep penetration and less damage, provides a broad prospect for cancer treatment. Nowadays, the development of TP-PDT suffers from the low two-photon absorption (TPA) intensity and short triplet state lifetime of photosensitizers (PSs) used in TP-PDT. Herein, we propose some novel modification strategies based on the thionated NpImidazole (the combination of naphthalimide and imidazole) derivatives to make efforts on those issues and obtain corresponding fluorescent probes for detecting ClO- and excellent PSs for TP-PDT. Density functional theory (DFT) and time-dependent DFT (TD-DFT) are used to help us characterize the photophysical properties and TP-PDT process of the newly designed compounds. Our results show that the introduction of different electron-donating groups at the position 4 of NpImidazole can effectively improve their TPA and emission properties. Specifically, 3s with a N,N-dimethylamino group has a large triplet state lifetime (τ = 699 µs) and TPA cross section value (δTPA = 314 GM), which can effectively achieve TP-PDT; additionally, 4s (with electron-donating group 2-oxa-6-azaspiro[3.3]heptane in NpImidazole) effectively realizes the dual-function of a PS for TP-PDT (τ = 25,122 µs, δTPA = 351 GM) and a fluorescent probe for detecting ClO- (Φf = 29% of the product 4o). Moreover, an important problem is clarified from a microscopic perspective, that is, why the transition property of 3s and 4s (1π-π*) from S1 to S0 is different from that of 1s and 2s (1n-π*). It is hoped that our work can provides valuable theoretical clues for the design and synthesis of heavy-atom-free NpImidazole-based PSs and fluorescent probes for the detection of hypochlorite.


Asunto(s)
Fotoquimioterapia , Ácido Hipocloroso , Colorantes Fluorescentes , Fármacos Fotosensibilizantes/farmacología , Fotones
12.
J Phys Chem A ; 127(46): 9771-9780, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37948560

RESUMEN

The discovery and utilization of pure organic thermally activated delayed fluorescence (TADF) materials provide a major breakthrough in obtaining high-performance and low-cost organic light-emitting diodes (OLEDs). In spite of recent research progress in TADF emitters, highly efficient and stable TADF emitters in high-concentration solutions and in the solid state have been rarely reported, and most of them suffer from aggregation-induced quenching (ACQ). To resolve this issue, the aggregation-induced delayed fluorescence (AIDF) mechanism was studied in depth by the simulation of excited-state dynamic processes, and the effect of geometric modifications on optical properties was minutely investigated based on molecular modeling. TD-DFT calculations demonstrate that it is the key point for the transformation between prompt fluorescence and TADF to effectively regulate singlet-triplet energy difference and electron-vibration coupling by the aggregation effect. Then, excellent green and red TADF materials with very small singlet-triplet energy differences of 0.05 and 0.06 eV, high TADF quantum yields up to 57.53% and 39.19%, and suitable fluorescence lifetimes of 0.99 and 1.67 us, respectively, were designed and obtained, which demonstrate the potential application of these two TADF materials in OLEDs.

13.
J Dairy Sci ; 106(7): 5182-5195, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37268580

RESUMEN

Adiponectin (encoded by ADIPOQ) is an adipokine that orchestrates energy homeostasis by modulating glucose and fatty acid metabolism in peripheral tissues. During the periparturient period, dairy cows often develop adipose tissue inflammation and decreased plasma adiponectin levels. Proinflammatory cytokine tumor necrosis factor-α (TNF-α) plays a pivotal role in regulating the endocrine functions of adipocytes, but whether it affects adiponectin production in calf adipocytes remains obscure. Thus, the present study aimed to determine whether TNF-α could affect adiponectin production in calf adipocytes and to identify the underlying mechanism. Adipocytes isolated from Holstein calves were differentiated and used for (1) BODIPY493/503 staining; (2) treatment with 0.1 ng/mL TNF-α for different times (0, 8, 16, 24, or 48 h); (3) transfection with peroxisome proliferator-activated receptor-γ (PPARG) small interfering RNA for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h; and (4) overexpression of PPARG for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h. After differentiation, obvious lipid droplets and secretion of adiponectin were observed in adipocytes. Treatment with TNF-α did not alter mRNA abundance of ADIPOQ but reduced the total and high molecular weight (HMW) adiponectin content in the supernatant of adipocytes. Quantification of mRNA abundance of endoplasmic reticulum (ER)/Golgi resident chaperones involved in adiponectin assembly revealed that ER protein 44 (ERP44), ER oxidoreductase 1α (ERO1A), and disulfide bond-forming oxidoreductase A-like protein (GSTK1) were downregulated in TNF-α-treated adipocytes, while 78-kDa glucose-regulated protein and Golgi-localizing γ-adaptin ear homology domain ARF binding protein-1 were unaltered. Moreover, TNF-α diminished nuclear translocation of PPARγ and downregulated mRNA abundance of PPARG and its downstream target gene fatty acid synthase, suggesting that TNF-α suppressed the transcriptional activity of PPARγ. In the absence of TNF-α, overexpression of PPARG enhanced the total and HMW adiponectin content in supernatant and upregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. However, knockdown of PPARG reduced the total and HMW adiponectin content in supernatant and downregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. In the presence of TNF-α, overexpression of PPARG decreased, while knockdown of PPARG further exacerbated TNF-α-induced reductions in total and HMW adiponectin secretion and gene expression of ERP44, ERO1A, and GSTK1. Overall, TNF-α reduces adiponectin assembly in the calf adipocyte, which may be partly mediated by attenuation of PPARγ transcriptional activity. Thus, locally elevated levels of TNF-α in adipose tissue may be one reason for the decrease in circulating adiponectin in periparturient dairy cows.


Asunto(s)
Adiponectina , PPAR gamma , Femenino , Animales , Bovinos , Adiponectina/metabolismo , PPAR gamma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo
14.
J Phys Chem A ; 126(42): 7650-7659, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36240504

RESUMEN

Tyrosinase is crucial to regulate the metabolism of phenol derivatives, playing an important role in the biosynthesis of melanin pigments, whereas an abnormal level of tyrosinase would lead to severe diseases. It is rather necessary to develop a sensitive and selective imaging tool to assess the level of tyrosinase in vivo. We thoroughly researched the luminous mechanism of the existing TPTYR probe and provided design strategies to improve its two-photon excited fluorescence properties. The designed probes benza2-TPTYR and product benza2-TPTYR-coumarin have large two-photon absorption cross sections at the NIR spectral region (41 GM/706 nm, 71 GM/852 nm), while benza2-TPTYR-coumarin possesses easily distinguishable spectrum in the visible region and a high fluorescence efficiency (ΦF = 0.27). What is more, novel two-photon excited multimodal imaging based on the pure organic small molecule benza1-TPTYR-coumarin (61 GM/936 nm) is proposed first, simultaneously possessing strong instantaneous fluorescent (563.79 nm) and persistent room-temperature phosphorescent emissions (767.68 nm, 0.54 ms).


Asunto(s)
Colorantes Fluorescentes , Monofenol Monooxigenasa , Melaninas , Temperatura , Cumarinas , Fenoles , Mediciones Luminiscentes , Imagen Multimodal
15.
J Dairy Sci ; 105(9): 7829-7841, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35863923

RESUMEN

Mitochondria are the main site of fatty acid oxidation and reactive oxygen species (ROS) formation. Damaged or dysfunctional mitochondria induce oxidative stress and increase the risk of lipid accumulation. During the process of mitophagy, PTEN induced kinase 1 (PINK1) accumulates on damaged mitochondria and recruits cytoplasmic Parkin to mitochondria. As an autophagy receptor protein, sequestosome-1 (p62) binds Parkin-ubiquitinated outer mitochondrial membrane proteins and microtubule-associated protein 1 light chain 3 (LC3) to facilitate degradation of damaged mitochondria. In nonruminants, clearance of dysfunctional mitochondria through the PINK1/Parkin-mediated mitophagy pathway contributes to reducing ROS production and maintaining metabolic homeostasis. Whether PINK1/Parkin-mediated mitophagy plays a similar role in dairy cow liver is not well known. Thus, the objective of this study was to investigate mitophagy status in dairy cows with fatty liver and its role in free fatty acid (FFA)-induced oxidative stress and lipid accumulation. Liver and blood samples were collected from healthy dairy cows (n = 10) and cows with fatty liver (n = 10) that had a similar number of lactations (median = 3, range = 2 to 4) and days in milk (median = 6 d, range = 3 to 9 d). Calf hepatocytes were isolated from 5 healthy newborn female Holstein calves (1 d of age, 30-40 kg). Hepatocytes were transfected with small interfering RNA targeted against PRKN for 48 h or transfected with PRKN overexpression plasmid for 36 h, followed by treatment with FFA (0.3 or 1.2 mM) for 12 h. Mitochondria were isolated from fresh liver tissue or calf hepatocytes. Serum concentrations of ß-hydroxybutyrate were higher in dairy cows with fatty liver. Hepatic malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in cows with fatty liver. The lower protein abundance of PINK1, Parkin, p62, and LC3-II in hepatic mitochondrial fraction of dairy cows with fatty liver indicated the mitophagy was impaired. In hepatocytes, knockdown of PRKN decreased protein abundance of p62 and LC3-II in the mitochondrial fraction, and increased contents of triacylglycerol (TG), MDA, and H2O2. In addition, protein abundances of PINK1, Parkin, p62, and LC3-II were lower in the mitochondrial fraction from hepatocytes treated with 1.2 mM FFA than the hepatocytes treated with 0.3 mM FFA, whereas the content of TG, MDA, and H2O2 increased. In 1.2 mM FFA-treated hepatocytes, PRKN overexpression increased protein abundance of p62 and LC3-II in the mitochondrial fraction and decreased contents of TG, MDA, and H2O2. Together, our data demonstrate that low abundance of mitophagy markers is associated with ROS overproduction in dairy cows with fatty liver and impaired mitophagy induced by a high concentration of FFA promotes ROS production and lipid accumulation in female calf hepatocytes.


Asunto(s)
Enfermedades de los Bovinos , Hígado Graso , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Hígado Graso/veterinaria , Femenino , Hepatocitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitofagia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Dairy Sci ; 105(10): 8426-8438, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35965124

RESUMEN

Sustained lipolysis and insulin resistance increase the risk of metabolic dysfunction in dairy cows during the transition period. Proinflammatory cytokines are key regulators of adipose tissue metabolism in nonruminants, but biological functions of these molecules in ruminants are not well known. Thus, the objective of this study was to investigate whether tumor necrosis factor-α (TNF-α) could affect insulin sensitivity and lipolysis in bovine adipocytes as well as the underlying mechanisms. Bovine adipocytes (obtained from the omental and mesenteric adipose depots) isolated from 5 Holstein female calves (1 d old) with similar body weight (median: 36.9 kg, range: 35.5-41.2 kg) were differentiated and used for (1) treatment with different concentrations of TNF-α (0, 0.1, 1, or 10 ng/mL) for 12 h; (2) pretreatment with 10 µM lipolytic agonist isoproterenol (ISO) for 3 h, followed by treatment with or without 10 ng/mL TNF-α for 12 h; and (3) pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 (20 µM for 2 h) and nuclear factor kappa B (NF-κB) inhibitor BAY 11-7082 (10 µM for 1 h) followed by treatment with or without 10 ng/mL TNF-α for 12 h. The TNF-α increased glycerol content in supernatant, decreased triglyceride content and insulin-stimulated phosphorylation of protein kinase B suggesting activation of lipolysis and impairment of insulin sensitivity. The TNF-α reduced cell viability, upregulated mRNA abundance of Caspase 3 (CASP3), an apoptosis marker, and increased activity of Caspase 3. In addition, increased phosphorylation of NF-κB and JNK, upregulation of mRNA abundance of interleukin-6 (IL-6), TNFA, and suppressor of cytokine signaling 3 (SOCS3) suggested that TNF-α activated NF-κB and JNK signaling pathways. Furthermore, ISO plus TNF-α-activated NF-κB and JNK signaling pathway to a greater extent than TNF-α alone. Combining TNF-α and ISO aggravated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. In the absence of TNF-α, inhibition of NF-κB and JNK did not alter glycerol content in supernatant, triglyceride content or insulin-stimulated phosphorylation of protein kinase B. In the presence of TNF-α, inhibition of NF-κB and JNK alleviated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. Overall, TNF-α impairs insulin sensitivity and induces lipolysis and apoptosis in bovine adipocytes, which may be partly mediated by activation of NF-κB and JNK. Thus, the data suggested that NF-κB and JNK are potential therapeutic targets for alleviating lipolysis dysregulation and insulin resistance in adipocytes.


Asunto(s)
Enfermedades de los Bovinos , Resistencia a la Insulina , Insulinas , Adipocitos/metabolismo , Animales , Caspasa 3/metabolismo , Bovinos , Enfermedades de los Bovinos/metabolismo , Femenino , Glicerol/metabolismo , Interleucina-6/metabolismo , Isoproterenol/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipólisis , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Triglicéridos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
J Chem Inf Model ; 61(10): 5082-5097, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34606272

RESUMEN

Hypochloric acid (HOCl) plays a vital role in the natural defense system, but abnormal levels of it can cause cell damage, accelerated human aging, and various diseases. It is of great significance to develop new probes for detecting HOCl in biosystems nondestructively and noninvasively. The purpose of this work is to explore new chemical modification strategies of two-photon excitation fluorescence (TPEF) probes to improve the poor water solubility and low efficiency in imaging applications. Nil-OH-6 has a two-photon absorption cross-section value as high as 243 GM and attains a good quantum yield of 0.49. In addition, the modification of terminal groups with different azetidine-heterospirocycles or N,N-dialkyl fused amino groups to Nile Red can effectively improve the fluorescence efficiency as well as increase the solubility to some extent. This study provides some strategies to simultaneously improve the fluorescence performance and solubility of these two-photon probes and, hence, reliable guidance and a foundation for the subsequent synthesis of TPEF probes based on Nile Red.


Asunto(s)
Colorantes Fluorescentes , Modelos Teóricos , Humanos , Oxazinas , Solubilidad , Agua
18.
Environ Monit Assess ; 193(2): 81, 2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33486598

RESUMEN

Heavy metal and metalloid (HMM) contamination of the water environment caused by mining activities is a great challenge to the global mining industry. HMMs released by various mines could easily enter the surrounding environment and pose serious threats to human health. Although the HMM pollution of surface water in various mines has been widely researched, relevant studies on the effects of mining activities on the surface water of hard-rock-type Li mines are scarce. Herein, a total of 81 water samples were collected from Jiajika mine for the first time, the largest hard-rock-type Li mine in Asia. The physical parameters and concentrations of HMMs and major ions of the samples were analyzed to evaluate the water quality and HMM level of surface water. Results showed that (1) most of the parameters analyzed adhered to the strictest guidelines of Chinese surface waters and the drinking water guidelines of WHO, except Mn, Pb, and As of a few samples from tailings-affected areas and Li-bearing areas; (2) mineral tailings obviously increased the pH and decreased the dissolved oxygen (DO) of the surrounding surface waters; (3) the highest concentrations of As (5.58 µg/L), Zn (81.8 µg/L), Ba (5.26 µg/L), and Co (0.33 µg/L) were observed around the tailings reservoir, whereas the highest concentrations of Cr (1.5 µg/L), Mn (380 µg/L), Pb (28.4 µg/L), and V (3.16 µg/L) were observed in Li-bearing areas; and (4) according to the statistical results, the concentrations of As, Cr, Ni, and V in surface water were mainly affected by mining activities, whereas those of Cu, Zn, Ba, Co, and Pb were dominantly affected by natural processes. These results provide useful information about water quality in relation to Li mining and can help the government make reasonable decisions regarding hard-rock-type Li resource exploitation activities.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Asia , China , Monitoreo del Ambiente , Humanos , Litio , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(2): 207-215, 2021 Mar.
Artículo en Zh | MEDLINE | ID: mdl-33829693

RESUMEN

OBJECTIVE: To investigate whether long-term exposure to inhaled sevoflurane, a volatile anesthetic, causes abnormal activities and memory impairment related to attention-deficit/hyperactivity disorder (ADHD) in neonatal rats. METHODS: On postnatal day 5 (P5), Sprague-Dawley rats were randomly assigned to two sevoflurane subgroups and two control subgroups and underwent experimental intervention. The two sevoflurane (SEVO) subgroups were exposed to 3% sevoflurane for 2 h and 4 h respectively, while the two control subgroups were given pure oxygen for the same amount and duration. Behavioral tests, including open-field test (OFT), five-choice serial reaction time task (5-CSRTT), fear-conditioning (FC) and Morris water maze (MWM), were applied to evaluate changes in cognition, memory, anxiety and ADHD-related behavioral changes in the rats in adolescence (-P25) and in adulthood (-P65). RESULTS: In OFT, the SEVO 2 h and SEVO 4 h subgroups displayed activity level and exploratory behaviors similar to those of the control subgroups on P21 and P61, with no statistically significant difference identified in the data. 5-CSRTT results on P25 and P65 indicated no statistically significant difference between the SEVO subgroups and the control subgroups in regard to ADHD-related abnormal behaviors, including number of immature reaction, rate of correct response and omission rate. In the FC experiment, SEVO 4 h group had a shorter freezing period and longer period of freezing latency ( P=0.029) in comparison to the control groups. The results of the MWM test showed that the escape latency period of rats in the SEVO 4 h group was significantly prolonged on the second day and the third day, compared to the control groups ( P<0.05). The average swimming speed of SEVO groups did no exhibit any statistically significant difference on P69 or P76. The time the SEVO 4 h group spent in the target quadrant was significantly shorter than that of the control group ( P=0.039) and percentage of distance traveled in the target quadrant was significantly reduced compared to that the control group ( P=0.048). CONCLUSION: The findings suggest that four hours of inhaled sevoflurane exposure in neonate rats may cause memory impairment, but does no increase risks for ADHD-related abnormal activities.


Asunto(s)
Anestésicos por Inhalación , Trastorno por Déficit de Atención con Hiperactividad , Anestésicos por Inhalación/toxicidad , Animales , Animales Recién Nacidos , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley , Sevoflurano
20.
J Am Chem Soc ; 142(2): 783-791, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31894972

RESUMEN

Here we report that a covalent organic framework (COF), which contains 2,5-di(imine)-substituted 1,4-dihydroxybenzene (diiminol) moieties, undergoes color changes in the presence of solvents or solvent vapor that are rapid, passive, reversible, and easily detectable by the naked eye. A new visible absorption band appears in the presence of polar solvents, especially water, suggesting reversible conversion to another species. This reversibility is attributed to the ability of the diiminol to rapidly tautomerize to an iminol/cis-ketoenamine and its inability to doubly tautomerize to a diketoenamine. Density functional theory (DFT) calculations suggest similar energies for the two tautomers in the presence of water, but the diiminol is much more stable in its absence. Time-dependent DFT calculations confirm that the iminol/cis-ketoenamine absorbs at longer wavelength than the diiminol and indicate that this absorption has significant charge-transfer character. A colorimetric humidity sensing device constructed from an oriented thin film of the COF responded quickly to water vapor and was stable for months. These results suggest that tautomerization-induced electronic structure changes can be exploited in COF platforms to give rapid, reversible sensing in systems that exhibit long-term stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA