Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microb Pathog ; 194: 106825, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074517

RESUMEN

Short beak and dwarfism syndrome (SBDS) is attributed to Novel Goose Parvovirus (NGPV), which has inflicted significant economic losses on farming in China. Despite its significant impact, limited research has been conducted on the pathogenesis of this disease. The SD strain, a parvovirus variant isolated from ducks in Shandong province, was identified and characterized in our study. Phylogenetic analysis and sequence comparisons confirmed the classification of the SD strain as a member of NGPV. Based on this information, we established an animal model of SBDS by inoculating Cherry Valley ducks with the SD strain. Our findings indicate that infection with the SD strain leads to a reduction in body weight, beak length, width, and tibia length. Notably, significant histopathological alterations were observed in the thymus, spleen, and intestine of the infected ducks. Furthermore, the SD strain induces bone disorders and inflammatory responses. To evaluate the impact of NGPV on intestinal homeostasis, we performed 16S rDNA sequencing and gas chromatography to analyze the composition of intestinal flora and levels of short-chain fatty acids (SCFAs) in the cecal contents. Our findings revealed that SD strain infection induces dysbiosis in cecal microbial and a decrease in SCFAs production. Subsequent analysis revealed a significant correlation between bacterial genera and the clinical symptoms in NGPV SD infected ducks. Our research providing novel insights into clinical pathology of NGPV in ducks and providing a foundation for the research of NGPV treatment targeting gut microbiota.


Asunto(s)
Patos , Infecciones por Parvoviridae , Filogenia , Enfermedades de las Aves de Corral , Animales , Patos/virología , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/patología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/patología , China , Parvovirinae/genética , Parvovirinae/aislamiento & purificación , Parvovirinae/patogenicidad , Microbioma Gastrointestinal , Intestinos/patología , Intestinos/virología , ARN Ribosómico 16S/genética , Modelos Animales de Enfermedad , Disbiosis/virología , Disbiosis/veterinaria , Ácidos Grasos Volátiles/metabolismo , Gansos/virología , Bazo/patología , Bazo/virología , Pico/virología , Pico/patología
2.
BMC Vet Res ; 16(1): 172, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487081

RESUMEN

BACKGROUND: Mycoplasmal pneumonia is an important infectious disease that threatens sheep and goat production worldwide, and Mycoplasma ovipneumoniae is one of major etiological agent causing mycoplasmal pneumonia. Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technique, and RPA-based diagnostic assays have been described for the detection of different types of pathogens. RESULTS: The RPA assays using real-time fluorescence detection (real-time RPA) and lateral flow strip detection (LFS RPA) were developed to detect M. ovipneumoniae targeting a conserved region of the 16S rRNA gene. Real-time RPA was performed in a portable florescence scanner at 39 °C for 20 min. LFS RPA was performed in a portable metal bath incubator at 39 °C for 15 min, and the amplicons were visualized with the naked eyes within 5 min on the lateral flow strip. Both assays were highly specific for M. ovipneumoniae, as there were no cross-reactions with other microorganisms tested, especially the pathogens involved in respiratory complex and other mycoplasmas frequently identified in ruminants. The limit of detection of LFS RPA assay was 1.0 × 101 copies per reaction using a recombinant plasmid containing target gene as template, which is 10 times lower than the limit of detection of the real-time RPA and real-time PCR assays. The RPA assays were further validated on 111 clinical sheep nasal swab and fresh lung samples, and M. ovipneumoniae DNA was detected in 29 samples in the real-time RPA, 31 samples in the LFS RPA and 32 samples in the real-time PCR assay. Compared to real-time PCR, the real-time RPA and LFS RPA showed diagnostic specificity of 100 and 98.73%, diagnostic sensitivity of 90.63 and 93.75%, and a kappa coefficient of 0.932 and 0.934, respectively. CONCLUSIONS: The developed real-time RPA and LFS RPA assays provide the attractive and promising tools for rapid, convenient and reliable detection of M. ovipneumoniae in sheep, especially in resource-limited settings. However, the effectiveness of the developed RPA assays in the detection of M. ovipneumoniae in goats needs to be further validated.


Asunto(s)
Mycoplasma ovipneumoniae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Neumonía por Mycoplasma/diagnóstico , Enfermedades de las Ovejas/diagnóstico , Animales , Mycoplasma ovipneumoniae/genética , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Recombinasas/metabolismo , Ovinos
3.
Mol Cell Probes ; 45: 14-18, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30930280

RESUMEN

Actinobacillus pleuropneumoniae is the etiological agent of swine contagious pleuropneumoniae, which is distributed globally and associated with severe economic losses in the pig rearing industry. In this study, a real-time recombinase polymerase amplification assay (real-time RPA) based on the apxIVA gene was developed to rapid detect A. pleuropneumoniae. Real-time RPA was performed successfully in Genie III at the constant temperature of 39 °C for 20 min. The developed assay was highly specific for A. pleuropneumoniae, and the sensitivity at 95% probability was 536 fg of A. pleuropneumoniae genomic DNA. The real-time RPA for A. pleuropneumoniae was further evaluated on the 112 clinical swine lung and tonsil samples, and 25 (22.3%), 27 (24.1%), and 12 (10.7%) samples were positive for A. pleuropneumoniae by the real-time RPA, real-time PCR and bacterial isolation, respectively. With a real-time PCR as the reference method, the real-time RPA showed a diagnostic specificity of 98.8%, a diagnostic sensitivity of 88.9%, a positive predicative value of 96.0%, a negative predictive value of 96.5%, and a kappa value of 0.900. The above data demonstrated the well potentiality and usefulness of the developed real-time RPA assay in the reliable detection of A. pleuropneumoniae, especially in resource limited settings.


Asunto(s)
Infecciones por Actinobacillus/diagnóstico , Actinobacillus pleuropneumoniae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Enfermedades de los Porcinos/virología , Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/genética , Animales , Proteínas Bacterianas/genética , Pulmón/microbiología , Tonsila Palatina/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Recombinasas/metabolismo , Sensibilidad y Especificidad , Porcinos
4.
Poult Sci ; 101(7): 101929, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35691050

RESUMEN

In recent years, ostrich disease characterized by paralysis and diarrhea has been circulating in some regions of China, causing huge economic losses to the ostrich breeding industry. In our study, clinical samples from diseased ostriches were collected, and only parvovirus was detected. The virus distribution analysis by histopathology and quantitative real-time PCR assays indicated that the virus had a wide range of tissue tropisms. The full-length genome of the ostrich parvovirus (OsPV) was sequenced and comprehensively analyzed. Interestingly, the phylogenetic and alignment results indicated that the OsPV and the goose parvovirus (GPV) form a separate branch. In contrast to GPV strains, OsPV showed 2 new 14 nucleotide deletions in the inverted terminal repeat (ITR) region. Furthermore, recombination analysis indicated that OsPV was a recombination strain between the vaccine strain SYG61v and the virulent strain B strain, with the major parent of OsPV as the SYG61v strain and the minor parent as the B strain. The 14 nucleotide deletions in the ITR region as well as recombination may be some of the reasons for the cross-species transmission of parvovirus from goose to ostrich. The above data will contribute to a better understanding of the molecular biology of the novel OsPV and help to develop the vaccine candidate strain.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus , Enfermedades de las Aves de Corral , Struthioniformes , Animales , Pollos , China/epidemiología , Patos , Gansos , Genómica , Nucleótidos , Infecciones por Parvoviridae/veterinaria , Parvovirinae , Parvovirus/genética , Filogenia , Enfermedades de las Aves de Corral/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA