Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 106: 129774, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688438

RESUMEN

Herein, we constructed a fluorescence biosensor for the ultra-sensitive analysis of microRNAs (miRNAs) by combining DNA hairpins transition triggered strand displacement amplification (DHT-SDA) with primer exchange reaction (PER). Target miRNA initiated DHT-SDA to facilitate the generation of multiple single-stranded DNA (ssDNA) as PER primer, which was extended into a long ssDNA. The biosensor is successfully utilized in detecting miRNAs with high sensitivity (limit of detection for miRNA-21 was 58 fM) and a good linear relationship between 100 nM and 100 fM. By simply changing the DNA hairpin sequence, the constructed biosensor can be extended to analyze another miRNAs. Moreover, the biosensor has the feasibility of detecting miRNAs in real samples with satisfactory accuracy and reliability. Therefore, the fluorescent biosensor has great application potential in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas de Amplificación de Ácido Nucleico , MicroARNs/metabolismo , MicroARNs/análisis , Humanos , ADN/química , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Fluorescencia , Secuencias Invertidas Repetidas , Espectrometría de Fluorescencia , Límite de Detección , Cartilla de ADN/química
2.
Anal Bioanal Chem ; 416(13): 3195-3203, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613682

RESUMEN

We propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase. At such crRNA quantities, ternary Cas13a, crRNA, and activator complexes are successfully constructed and activate Cas13a to enhance fluorescence signal outputs. The biosensor sensitively and specifically monitored H1N1 viral RNA levels down to 3.23 pM and showed good linearity when H1N1 RNA concentrations were 100 pM-1 µM. Biosensor specificity was also excellent. Importantly, our biosensor may be used to detect other viral RNAs by altering the sequences of the two probe junctions, with potential applications for the clinical diagnosis of viruses and other biomedical studies.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Subtipo H1N1 del Virus de la Influenza A , ARN Viral , Técnicas Biosensibles/métodos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , ARN Viral/análisis , ARN Viral/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Límite de Detección , Fluorescencia , Transcripción Genética
3.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970675

RESUMEN

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Escherichia coli O157 , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/inmunología , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Nanoestructuras/química , Electrodos , Compuestos Ferrosos/química , Anticuerpos Inmovilizados/inmunología , Metalocenos/química , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Péptidos Antimicrobianos/química
4.
New Phytol ; 240(3): 1134-1148, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606093

RESUMEN

Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Orosomucoide/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esfingolípidos/metabolismo , Ceramidas/metabolismo , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
J Med Internet Res ; 25: e37599, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36651587

RESUMEN

BACKGROUND: Virtual and augmented reality (VAR) represents a combination of current state-of-the-art computer and imaging technologies and has the potential to be a revolutionary technology in many surgical fields. An increasing number of investigators have developed and applied VAR in hip-related surgery with the aim of using this technology to reduce hip surgery-related complications, improve surgical success rates, and reduce surgical risks. These technologies are beginning to be widely used in hip-related preoperative operation simulation and training, intraoperative navigation tools in the operating room, and postoperative rehabilitation. OBJECTIVE: With the aim of reviewing the current status of virtual reality (VR) and augmented reality (AR) in hip-related surgery and summarizing its benefits, we discussed and briefly described the applicability, advantages, limitations, and future perspectives of VR and AR techniques in hip-related surgery, such as preoperative operation simulation and training; explored the possible future applications of AR in the operating room; and discussed the bright prospects of VR and AR technologies in postoperative rehabilitation after hip surgery. METHODS: We searched the PubMed and Web of Science databases using the following key search terms: ("virtual reality" OR "augmented reality") AND ("pelvis" OR "hip"). The literature on basic and clinical research related to the aforementioned key search terms, that is, studies evaluating the key factors, challenges, or problems of using of VAR technology in hip-related surgery, was collected. RESULTS: A total of 40 studies and reports were included and classified into the following categories: total hip arthroplasty, hip resurfacing, femoral neck fracture, pelvic fracture, acetabular fracture, tumor, arthroscopy, and postoperative rehabilitation. Quality assessment could be performed in 30 studies. Among the clinical studies, there were 16 case series with an average score of 89 out of 100 points (89%) and 1 case report that scored 81 (SD 10.11) out of 100 points (81%) according to the Joanna Briggs Institute Critical Appraisal Checklist. Two cadaveric studies scored 85 of 100 points (85%) and 92 of 100 points (92%) according to the Quality Appraisal for Cadaveric Studies scale. CONCLUSIONS: VR and AR technologies hold great promise for hip-related surgeries, especially for preoperative operation simulation and training, feasibility applications in the operating room, and postoperative rehabilitation, and have the potential to assist orthopedic surgeons in operating more accurately and safely. More comparative studies are necessary, including studies focusing on clinical outcomes and cost-effectiveness.


Asunto(s)
Realidad Aumentada , Cirugía Asistida por Computador , Realidad Virtual , Humanos , Cadáver , Quirófanos , Cirugía Asistida por Computador/métodos
6.
Sensors (Basel) ; 23(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37896664

RESUMEN

Energy management methods (EMMs) utilizing sensing, communication, and networking technologies appear to be one of the most promising directions for energy saving and environmental protection of fuel cell vehicles (FCVs). In real-world driving situations, EMMs based on driving cycle information are critical for FCVs and have been extensively studied. The collection and processing of driving cycle information is a fundamental and critical work that cannot be separated from sensors, global positioning system (GPS), vehicle-to-vehicle (V2V), vehicle-to-everything (V2X), intelligent transportation system (ITS) and some processing algorithms. However, no reviews have comprehensively summarized the EMMs for FCVs from the perspective of driving cycle information. Motivated by the literature gap, this paper provides a state-of-the-art understanding of EMMs for FCVs from the perspective of driving cycle information, including a detailed description for driving cycle information analysis, and a comprehensive summary of the latest EMMs for FCVs, with a focus on EMMs based on driving pattern recognition (DPR) and driving characteristic prediction (DCP). Based on the above analysis, an in-depth presentation of the highlights and prospects is provided for the realization of high-performance EMMs for FCVs in real-world driving situations. This paper aims at helping the relevant researchers develop suitable and efficient EMMs for FCVs using driving cycle information.

7.
Plant Physiol ; 187(3): 1713-1727, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618068

RESUMEN

Sphingolipids are structural components of the lipid bilayer that acts as signaling molecules in many cellular processes, including cell death. Ceramides, key intermediates in sphingolipid metabolism, are phosphorylated by the ceramide kinase ACCELERATED CELL DEATH5 (ACD5). The loss of ACD5 function leads to ceramide accumulation and spontaneous cell death. Here, we report that the jasmonate (JA) pathway is activated in the Arabidopsis (Arabidopsis thaliana) acd5 mutant and that methyl JA treatment accelerates ceramide accumulation and cell death in acd5. Moreover, the double mutants of acd5 with jasmonate resistant1-1 and coronatine insensitive1-2 exhibited delayed cell death, suggesting that the JA pathway is involved in acd5-mediated cell death. Quantitative sphingolipid profiling of plants treated with methyl JA indicated that JAs influence sphingolipid metabolism by increasing the levels of ceramides and hydroxyceramides, but this pathway is dramatically attenuated by mutations affecting JA pathway proteins. Furthermore, we showed that JAs regulate the expression of genes encoding enzymes in ceramide metabolism. Together, our findings show that JAs accelerate cell death in acd5 mutants, possibly by modulating sphingolipid metabolism and increasing ceramide levels.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Muerte Celular , Ciclopentanos/farmacología , Oxilipinas/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Reguladores del Crecimiento de las Plantas/farmacología , Esfingolípidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
8.
J Exp Bot ; 73(14): 4954-4967, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35436324

RESUMEN

Plant sphingolipids are important membrane components and bioactive molecules in development and defense responses. However, the function of sphingolipids in plant defense, especially against herbivores, is not fully understood. Here, we report that Spodoptera exigua feeding affects sphingolipid metabolism in Arabidopsis, resulting in increased levels of sphingoid long-chain bases, ceramides, and hydroxyceramides. Insect-induced ceramide and hydroxyceramide accumulation is dependent on the jasmonate signaling pathway. Loss of the Arabidopsis alkaline ceramidase ACER increases ceramides and decreases long-chain base levels in plants; in this work, we found that loss of ACER enhances plant resistance to S. exigua and improves response to mechanical wounding. Moreover, acer-1 mutants exhibited more severe root-growth inhibition and higher anthocyanin accumulation than wild-type plants in response to methyl jasmonate treatment, indicating that loss of ACER increases sensitivity to jasmonate and that ACER functions in jasmonate-mediated root growth and secondary metabolism. Transcript levels of ACER were also negatively regulated by jasmonates, and this process involves the transcription factor MYC2. Thus, our findings reveal that ACER is involved in mediating jasmonate-related plant growth and defense and that jasmonates function in regulating the expression of ACER.


Asunto(s)
Acer , Proteínas de Arabidopsis , Arabidopsis , Ceramidasa Alcalina/genética , Ceramidasa Alcalina/metabolismo , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidas/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Insectos , Oxilipinas/metabolismo , Esfingolípidos/metabolismo
9.
Anal Bioanal Chem ; 414(29-30): 8437-8445, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36264297

RESUMEN

This study provides proof of concept of a colorimetric biosensor for influenza H1N1 virus assay based on the CRISPR/Cas13a system and hybridization chain reaction (HCR). Target RNA of influenza H1N1 virus activated the trans-cleavage activity of Cas13a, which cleaved the special RNA sequence (-UUU-) of the probe, further initiating HCR to copiously generate G-rich DNA. Abundant G-quadruplex/hemin was formed in the presence of hemin, thus catalyzing a colorimetric reaction. The colorimetric biosensor exhibited a linear relationship from 10 pM to 100 nM. The detection limit was 0.152 pM. The biosensor specificity was excellent. This new and sensitive detection method for influenza virus is a promising rapid influenza diagnostic test.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Hemina , ADN Catalítico/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Gripe Humana/diagnóstico , Técnicas Biosensibles/métodos
10.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L219-L227, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949212

RESUMEN

The outcomes of coronavirus disease 2019 (COVID-19) vary between men and women. Some statistical reports have shown that men have a higher risk of developing COVID-19 and suffer from worse outcomes than females. Although there are many factors that can explain the high prevalence of COVID-19 in men, such as lifestyle habits and the different profile of comorbidities among sexes, the distinctions between male and female immune systems cannot be ignored. It has been sufficiently shown that sex differences have a critical influence on the shaping of immune response, which then leads to different pathogenesis in infectious diseases. Compared with males, females typically have a more effective innate and adaptive immune response to viral infections in COVID-19. What's more, there is a growing body of evidence showing that estrogen exerts an effect on the regulation of immune response. This article examines the effect and mechanism of estrogen on COVID-19.


Asunto(s)
Inmunidad Adaptativa , COVID-19/inmunología , Estrógenos/inmunología , Inmunidad Innata , SARS-CoV-2/inmunología , Caracteres Sexuales , Femenino , Humanos , Masculino
11.
Analyst ; 146(15): 4841-4847, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34223580

RESUMEN

A novel electrochemical biosensor for detecting pathogenic bacteria was designed based on specific magnetic separation and highly sensitive click chemistry. Instead of enzyme-antibody conjugates, organic-inorganic hybrid nanoflowers [concanavalin A (Con A)-Cu3(PO4)2] were used as the signal probe of the sandwich structure. The inorganic component, the copper ions of hybrid nanoflowers, was first used to amplify signal transduction for enzyme-free detection. Sodium ascorbate could dissolve Cu3(PO4)2 of the signal probe to produce Cu2+, which was subsequently converted to Cu+, triggering the Cu+-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between azide-functionalized ssDNA (a fragment of the DNAzyme-containing sequence) and alkyne-functionalized ssDNA immobilized onto the electrode surface. As a result, the DNAzyme was immobilized onto the gold electrode, which produced a positive and stable electrical signal. An exceptional linear relationship was observed between the electrical signal and the concentration of Salmonella typhimurium (101-107 CFU mL-1) with a detection limit of 10 CFU mL-1. The developed electrochemical biosensor based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes exhibited good results in detecting S. typhimurium in milk samples.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Bacterias , Química Clic , Cobre , Técnicas Electroquímicas , Oro , Límite de Detección
12.
Biotechnol Appl Biochem ; 68(3): 560-567, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32472699

RESUMEN

To prevent foodborne diseases and minimize their impacts, it is extremely important to develop a cost-effective and efficient bacterial detection assay for diagnostics, particularly in resource-poor settings. In this study, 16S rRNA from foodborne Salmonella was coupled with multiple HCR (hybridization chain reaction) concatemers and functionalized in a signal structure for lateral flow nucleic acid biosensor (LFNAB) detection. The 16S rRNA was incubated with two specific capture probes and multiple helper probes carrying the same initiator, to unwind its secondary structure and form an "initiators-on-a-string" complex. Through use of the initiators, each target 16S rRNA yielded multiple HCR concatemers tethered to numerous biotins, and numerous streptavidin-labeled gold nanoparticles were introduced on the LFNAB. The limit of detection was 53.65 CFU/mL for Salmonella. Notably, this method has high specificity and applicability for the detection of Salmonella in food and water samples.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Salmonella/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/diagnóstico , Oro/química , Humanos , Nanopartículas del Metal/química , Salmonella/genética
13.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243136

RESUMEN

Our previous study showed that pentagalloylglucose (PGG), a naturally occurring hydrolyzable phenolic tannin, possesses significant anti-rabies virus (RABV) activity. In BHK-21 cells, RABV induced the overactivation of signal transducer and activator of transcription 3 (STAT3) by suppressing the expression of suppressor of cytokine signaling 3 (SOCS3). Inhibition of STAT3 by niclosamide, small interfering RNA, or exogenous expression of SOCS3 all significantly suppressed the replication of RABV. Additionally, RABV-induced upregulation of microRNA 455-5p (miR-455-5p) downregulated SOCS3 by directly binding to the 3' untranslated region (UTR) of SOCS3. Importantly, PGG effectively reversed the expression of miR-455-5p and its following SOCS3/STAT3 signaling pathway. Finally, activated STAT3 elicited the expression of interleukin-6 (IL-6), thereby contributing to RABV-associated encephalomyelitis; however, PGG restored the level of IL-6 in vitro and in vivo in a SOCS3/STAT3-dependent manner. Altogether, these data identify a new miR-455-5p/SOCS3/STAT3 signaling pathway that contributes to viral replication and IL-6 production in RABV-infected cells, with PGG exerting its antiviral effect by inhibiting the production of miR-455-5p and the activation of STAT3.IMPORTANCE Rabies virus causes lethal encephalitis in mammals and poses a serious public health threat in many parts of the world. Numerous strategies have been explored to combat rabies; however, their efficacy has always been unsatisfactory. We previously reported a new drug, PGG, which possesses a potent inhibitory activity on RABV replication. Herein, we describe the underlying mechanisms by which PGG exerts its anti-RABV activity. Our results show that RABV induces overactivation of STAT3 in BHK-21 cells, which facilitates viral replication. Importantly, PGG effectively inhibits the activity of STAT3 by disrupting the expression of miR-455-5p and increases the level of SOCS3 by directly targeting the 3' UTR of SOCS3. Furthermore, the downregulated STAT3 inhibits the production of IL-6, thereby contributing to a reduction in the inflammatory response in vivo Our study indicates that PGG effectively inhibits the replication of RABV by the miR-455-5p/SOCS3/STAT3/IL-6-dependent pathway.


Asunto(s)
Taninos Hidrolizables/farmacología , Virus de la Rabia/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Cricetinae , Interleucina-6/metabolismo , MicroARNs/efectos de los fármacos , MicroARNs/genética , Rabia/virología , Virus de la Rabia/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
14.
Analyst ; 145(22): 7340-7348, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32930195

RESUMEN

We developed an electrochemical aptasensor based on cocoon-like DNA nanostructures as signal tags for highly sensitive and selective detection of Escherichia coli O157:H7. The stable cocoon-like DNA nanostructures synthesized by the rolling circle amplification reaction were loaded with hemin as electrochemical signal tags to amplify the signals. The single-stranded DNA capture probes were modified on the surface of a Au electrode via a Au-S bond. The E. coli O157:H7 specific aptamer and capture probe formed double-stranded DNA structures on the Au electrode. The aptamer preferentially bound to E. coli O157:H7, causing the dissociation of some aptamer-capture probes and releasing some capture probes. Subsequently, the free capture probes hybridized with the DNA nanostructures through the cDNA sequence. Under optimal conditions, the change in the electrochemical signal was proportional to the logarithm of E. coli O157:H7 concentration, from 10 to 106 CFU mL-1, and the detection limit was estimated to be 10 CFU mL-1. The electrochemical aptasensor could be readily used to detect various pathogenic bacteria and to provide a new method of early diagnosis of pathogenic microorganisms.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Nanoestructuras , Técnicas Electroquímicas , Electrodos , Escherichia coli O157/genética
15.
Analyst ; 145(12): 4328-4334, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32367088

RESUMEN

A sandwich-type electrochemical biosensor was successfully constructed for the sensitive detection of pathogenic bacteria. In this biosensor platform, methylene blue (MB) organic-inorganic nanocomposites (MB@MI) were synthesized from magainin I (MI, antimicrobial peptide specific to Escherichia coli O157:H7), Cu3(PO4)2 and MB via a one-pot method, and were explored as a novel electrochemical signal label of biosensors generating amplified electrochemical signals by differential pulse voltammetry (DPV). E. coli O157:H7 specifically sandwich bound to the aptamers on the electrode surface and MB@MI nanocomposites, and the changes in the current signal generated on the electrode surface were used for the quantitative determination of E. coli O157:H7. Under optimum conditions, the proposed biosensor showed excellent performance with a wide linear range of 102-107 CFU mL-1 and a low detection limit of 32 CFU mL-1, featuring favorable selectivity, repeatability and stability. According to the experiments conducted on real samples, the proposed approach is capable of detecting pathogenic bacteria in clinical diagnostics.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Escherichia coli O157/aislamiento & purificación , Azul de Metileno/química , Nanocompuestos/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Aptámeros de Nucleótidos/química , ADN/química , Escherichia coli O157/química , Contaminación de Alimentos/análisis , Ácidos Nucleicos Inmovilizados/química , Leche/microbiología
16.
Mikrochim Acta ; 187(12): 679, 2020 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-33247373

RESUMEN

A point-of-care (POC) immunoassay was established for the sensitive and rapid detection of pathogenic Escherichia coli O157:H7, using magnetic Fe3O4 organic-inorganic composites (Ab@Fe3O4) for immunomagnetic separation, nanozyme platinum nanoparticle (PtNp) organic-inorganic composites (Ap@PtNp) for signal amplification, and thermometer readings. Antibodies and Fe3O4 were incubated in Cu2+ phosphate buffer to synthesize the magnetic composite Ab@Fe3O4 with antibodies, to specifically capture E. coli O157:H7. Antimicrobial peptides and PtNp were incubated in Cu2+ phosphate buffer to synthesize the signal composites Ap@PtNp with antimicrobial peptides (magainin I), recognizing and labeling E. coli O157:H7. In the presence of E. coli O157:H7, magnetic microcomposites targeted bacteria and signal microcomposites to form the sandwich structure: Ab@Fe3O4-bacteria-Ap@PtNp for magnetic separation. Ap@PtNp of signal composites catalyzed H2O2 to generate thermo-signals (temperature rise), which were determined by a thermometer. This point-of-care bioassay detected E. coli O157:H7 in the linear range of 101-107 CFU mL-1 and with a detection limit of 14 CFU mL-1. One-pot process magnetic Fe3O4 organic-inorganic composites (Ab@Fe3O4, magnetic microcomposites, MMC) for immunomagnetic separation and nanozyme platinum nanoparticle (PtNp) organic-inorganic composites (Ap@PtNp, signal microcomposites, SMC) were used as signal amplification and thermometer readings for E. coli O157:H7 detection.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Escherichia coli O157/aislamiento & purificación , Óxido Ferrosoférrico/química , Inmunoensayo/métodos , Magnetismo , Nanopartículas del Metal/química , Anticuerpos Antibacterianos/química , Escherichia coli O157/inmunología , Microbiología de Alimentos , Inmunoensayo/instrumentación , Platino (Metal)/química , Sistemas de Atención de Punto , Termómetros
17.
Bioorg Med Chem Lett ; 28(23-24): 3802-3807, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392778

RESUMEN

Rapid, sensitive and point-of-care detection of foodborne pathogenic bacteria is essential for food safety. In this study, we found that hemin-concanavalin A hybrid nanoflowers (HCH nanoflowers), as solid mimic peroxidase, could catalyze oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) in the presence of H2O2 to a green-colored product. HCH nanoflowers, integrating the essential functions of both biological recognition and signal amplification, meet the requirements of signal labels for colorimetric immunoassay of bacteria. In view of the excellent peroxidase mimetic catalytic activity of HCH nanoflowers, a colorimetric biosensing platform was newly constructed and applied for sensitive detection of foodborne Escherichia coli O157:H7 (E. coli O157:H7). The corresponding detection limits was as low as 4.1 CFU/mL with wide linear ranges (101-106 CFU/mL).


Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles/métodos , Colorimetría/métodos , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/aislamiento & purificación , Hemina/química , Nanoestructuras/química , Animales , Benzotiazoles/química , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Peróxido de Hidrógeno/química , Inmunoensayo/métodos , Límite de Detección , Leche/microbiología , Peroxidasa/química , Ácidos Sulfónicos/química
18.
Mikrochim Acta ; 185(10): 490, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30284044

RESUMEN

The published version of this article, unfortunately, contained error. The authors are re-writing to express their sincere apology for a mistake that a mark "10-5, 10-4, 10-3, 10-2, 10-1 CFU•mL-1" in the legend of Fig. 2 was not corrected as "105, 104, 103, 102, 101 CFU•mL-1".

19.
Mikrochim Acta ; 185(10): 464, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30225733

RESUMEN

Pregnancy test strips are widely used in daily life. A commercial pregnancy test strip was modified to obtain a point-of-care device for the detection of pathogenic bacteria. Hybrid nanoflowers were prepared from concanavalin A, human chorionic gonadotropin, and Cu3(PO4)2 via a one-pot method. They were used as signaling probes in an off-the-shelf pregnancy test strip. This modified lateral flow immunoassay can detect Escherichia coli O157:H7 with a detection limit of 4 CFU·mL-1, and Salmonella typhimurium with a detection limit of 3 CFU·mL-1. Conceivably, the method has high potential as a portable and cost-effective tool for rapid determination of a wide range of analytes, especially in resource-constrained settings. Graphical abstract Hybrid nanoflower loaded human chorionic gonadotropin (hCG) and concanavalin A (hCG - nanoflowers) were synthesized via a one-pot method and used as signal labels with commercial commercial-off-the-shelf pregnancy test strips to detect pathogenic bacteria targets, thus yielding an easily smartphone readout signal.


Asunto(s)
Técnicas Biosensibles/instrumentación , Gonadotropina Coriónica/metabolismo , Concanavalina A/metabolismo , Cobre/química , Escherichia coli O157/aislamiento & purificación , Nanoestructuras/química , Fosfatos/química , Salmonella typhimurium/aislamiento & purificación , Teléfono Inteligente , Animales , Femenino , Humanos , Límite de Detección , Leche/microbiología , Sistemas de Atención de Punto , Embarazo , Tiras Reactivas/química , Tiras Reactivas/metabolismo , Factores de Tiempo
20.
Int J Mol Sci ; 15(4): 5193-8, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24670473

RESUMEN

Early diagnosis is important for the prompt post-exposure prophylaxis of lyssavirus infections. To diagnose Irkut virus (IRKV) infection during incubation in mice, a novel method using magnetic bead-based serum peptide profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been established. For this test, serum peptides were concentrated by adsorption to and elution from the magnetic bead-based weak cation ion exchanger. Mass spectrograms obtained by MALDI-TOF MS were analyzed using ClinProTools bioinformatics software. Construction of the diagnostic model was performed using serum samples from mice infected with IRKV and rabies virus (RABV) BD06, Flury-LEP, and SRV9 (as controls). The method accurately diagnosed sera 2, 4 and 8 days after IRKV and RABV infections. The sensitivity, specificity, and total accuracy of diagnosis were 86.7%, 95.2%, and 92.9%, respectively. However, IRKV could not be differentiated from RABV 1 day after infection. The results of the present study indicate that serum peptide profiling by MALDI-TOF MS is a promising technique for the early clinical diagnosis of lyssavirus infections and needs to be further tested in humans and farm animals.


Asunto(s)
Lyssavirus/clasificación , Magnetismo/métodos , Nanopartículas de Magnetita , Infecciones por Rhabdoviridae/diagnóstico , Proteínas Virales/sangre , Animales , Biomarcadores/sangre , Línea Celular , Cricetinae , Modelos Animales de Enfermedad , Diagnóstico Precoz , Femenino , Ratones , Ratones Endogámicos BALB C , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA