Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(23): 15771-15778, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38819401

RESUMEN

The active site cofactor of [FeFe]-hydrogenases consists of a cubane [4Fe-4S]-cluster and a unique [2Fe-2S]-cluster, harboring unusual CO- and CN--ligands. The biosynthesis of the [2Fe-2S]-cluster requires three dedicated maturation enzymes called HydG, HydE and HydF. HydG and HydE are both involved in synthesizing a [2Fe-2S]-precursor, still lacking parts of the azadithiolate (adt) moiety that bridge the two iron atoms. This [2Fe-2S]-precursor is then finalized within the scaffold protein HydF, which binds and transfers the [2Fe-2S]-precursor to the hydrogenase. However, its exact binding mode within HydF is still elusive. Herein, we identified the binding location of the [2Fe-2S]-precursor by altering size and charge of a highly conserved protein pocket via site directed mutagenesis (SDM). Moreover, we identified two serine residues that are essential for binding and assembling the [2Fe-2S]-precursor. By combining SDM and molecular docking simulations, we provide a new model on how the [2Fe-2S]-cluster is bound to HydF and demonstrate the important role of one highly conserved aspartate residue, presumably during the bioassembly of the adt moiety.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Hidrogenasas/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Sitios de Unión , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hierro/química , Hierro/metabolismo , Modelos Moleculares
2.
Chembiochem ; 24(11): e202300222, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36944179

RESUMEN

The active site of [FeFe]-hydrogenases contains a cubane [4Fe-4S]-cluster and a unique diiron cluster with biologically unusual CO and CN- ligands. The biogenesis of this diiron site, termed [2FeH ], requires the maturation proteins HydE, HydF and HydG. During the maturation process HydF serves as a scaffold protein for the final assembly steps and the subsequent transfer of the [2FeH ] precursor, termed [2FeP ], to the [FeFe]-hydrogenase. The binding site of [2FeP ] in HydF has not been elucidated, however, the [4Fe-4S]-cluster of HydF was considered as a possible binding partner of [2FeP ]. By targeting individual amino acids in HydF from Thermosipho melanesiensis using site directed mutagenesis, we examined the postulated binding mechanism as well as the importance and putative involvement of the [4Fe-4S]-cluster for binding and transferring [2FeP ]. Surprisingly, our results suggest that binding or transfer of [2FeP ] does not involve the proposed binding mechanism or the presence of a [4Fe-4S]-cluster at all.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Hidrogenasas/metabolismo , Proteínas/metabolismo , Sitios de Unión , Dominio Catalítico , Proteínas Hierro-Azufre/química
3.
Proc Natl Acad Sci U S A ; 117(34): 20520-20529, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32796105

RESUMEN

As paradigms for proton-coupled electron transfer in enzymes and benchmarks for a fully renewable H2 technology, [FeFe]-hydrogenases behave as highly reversible electrocatalysts when immobilized on an electrode, operating in both catalytic directions with minimal overpotential requirement. Using the [FeFe]-hydrogenases from Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA1) we have conducted site-directed mutagenesis and protein film electrochemistry to determine how efficient catalysis depends on the long-range coupling of electron and proton transfer steps. Importantly, the electron and proton transfer pathways in [FeFe]-hydrogenases are well separated from each other in space. Variants with conservative substitutions (glutamate to aspartate) in either of two positions in the proton-transfer pathway retain significant activity and reveal the consequences of slowing down proton transfer for both catalytic directions over a wide range of pH and potential values. Proton reduction in the variants is impaired mainly by limiting the turnover rate, which drops sharply as the pH is raised, showing that proton capture from bulk solvent becomes critical. In contrast, hydrogen oxidation is affected in two ways: by limiting the turnover rate and by a large overpotential requirement that increases as the pH is raised, consistent with the accumulation of a reduced and protonated intermediate. A unique observation having fundamental significance is made under conditions where the variants still retain sufficient catalytic activity in both directions: An inflection appears as the catalytic current switches direction at the 2H+/H2 thermodynamic potential, clearly signaling a departure from electrocatalytic reversibility as electron and proton transfers begin to be decoupled.


Asunto(s)
Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Chlamydomonas reinhardtii , Clostridium , Transporte de Electrón , Hidrogenasas/genética , Proteínas Hierro-Azufre/genética , Mutagénesis Sitio-Dirigida , Protones
4.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139142

RESUMEN

Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Hidrogenasas/química , Filogenia , Ferredoxinas/metabolismo , Fotosíntesis , Hidrógeno/química , Proteínas Hierro-Azufre/metabolismo
5.
Angew Chem Int Ed Engl ; 62(7): e202216903, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36464641

RESUMEN

Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN- ) ligands. Extrinsic CO and CN- , however, inhibit hydrogenases. The mechanism by which CN- binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN- -treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Šallowed us to distinguish intrinsic CN- and CO ligands and to show that extrinsic CN- binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN- treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Protones , Hidrógeno/química , Hidrogenasas/metabolismo , Cianuros/metabolismo , Catálisis , Proteínas Hierro-Azufre/química
6.
J Biol Inorg Chem ; 27(7): 631-640, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36038787

RESUMEN

Ferredoxins are essential electron transferring proteins in organisms. Twelve plant-type ferredoxins in the green alga Chlamydomonas reinhardtii determine the fate of electrons, generated in multiple metabolic processes. The two hydrogenases HydA1 and HydA2 of. C. reinhardtii compete for electrons from the photosynthetic ferredoxin PetF, which is the first stromal mediator of the high-energy electrons derived from the absorption of light energy at the photosystems. While being involved in many chloroplast-located metabolic pathways, PetF shows the highest affinity for ferredoxin-NADP+ oxidoreductase (FNR), not for the hydrogenases. Aiming to identify other potential electron donors for the hydrogenases, we screened as yet uncharacterized ferredoxins Fdx7, 8, 10 and 11 for their capability to reduce the hydrogenases. Comparing the performance of the Fdx in presence and absence of competitor FNR, we show that Fdx7 has a higher affinity for HydA1 than for FNR. Additionally, we show that synthetic FeS-cluster-binding maquettes, which can be reduced by NADPH alone, can also be used to reduce the hydrogenases. Our findings pave the way for the creation of tailored electron donors to redirect electrons to enzymes of interest.


Asunto(s)
Ferredoxinas , Hidrogenasas , Transporte de Electrón , Electrones , Ferredoxinas/química , Hidrógeno/metabolismo , Hidrogenasas/química , NADP/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(32): 15802-15810, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337676

RESUMEN

The active site (H-cluster) of [FeFe]-hydrogenases is a blueprint for the design of a biologically inspired H2-producing catalyst. The maturation process describes the preassembly and uptake of the unique [2FeH] cluster into apo-hydrogenase, which is to date not fully understood. In this study, we targeted individual amino acids by site-directed mutagenesis in the [FeFe]-hydrogenase CpI of Clostridium pasteurianum to reveal the final steps of H-cluster maturation occurring within apo-hydrogenase. We identified putative key positions for cofactor uptake and the subsequent structural reorganization that stabilizes the [2FeH] cofactor in its functional coordination sphere. Our results suggest that functional integration of the negatively charged [2FeH] precursor requires the positive charges and individual structural features of the 2 basic residues of arginine 449 and lysine 358, which mark the entrance and terminus of the maturation channel, respectively. The results obtained for 5 glycine-to-histidine exchange variants within a flexible loop region provide compelling evidence that the glycine residues function as hinge positions in the refolding process, which closes the secondary ligand sphere of the [2FeH] cofactor and the maturation channel. The conserved structural motifs investigated here shed light on the interplay between the secondary ligand sphere and catalytic cofactor.


Asunto(s)
Hidrogenasas/metabolismo , Hierro/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clostridium/enzimología , Electroquímica , Holoenzimas/química , Holoenzimas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/química , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier
8.
J Am Chem Soc ; 142(12): 5493-5497, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32125830

RESUMEN

[FeFe] hydrogenases are highly efficient catalysts for reversible dihydrogen evolution. H2 turnover involves different catalytic intermediates including a recently characterized hydride state of the active site (H-cluster). Applying cryogenic infrared and electron paramagnetic resonance spectroscopy to an [FeFe] model hydrogenase from Chlamydomonas reinhardtii (CrHydA1), we have discovered two new hydride intermediates and spectroscopic evidence for a bridging CO ligand in two reduced H-cluster states. Our study provides novel insights into these key intermediates, their relevance for the catalytic cycle of [FeFe] hydrogenase, and novel strategies for exploring these aspects in detail.

9.
Phys Chem Chem Phys ; 22(14): 7451-7459, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32215444

RESUMEN

Electron transfer processes between proteins are vital in many biological systems. Yet, the role of the solvent in influencing these redox reactions remains largely unknown. In this study, terahertz-time domain spectroscopy (THz-TDS) is used to probe the collective hydration dynamics of flavoenzyme ferredoxin-NADP+-reductase (FNR), electron transfer protein ferredoxin-1 (PetF), and the transient complex that results from their interaction. Results reveal changes in the sub-picosecond hydration dynamics that are dependent upon the surface electrostatic properties of the individual proteins and the transient complex. Retarded solvent dynamics of 8-9 ps are observed for FNR, PetF, and the FNR:PetF transient complex. Binding of the FNR:PetF complex to the substrate NADP+ results in bulk-like solvent dynamics of 7 ps, showing that formation of the ternary complex is entropically favored. Our THz measurements reveal that the electrostatic interaction of the protein surface with water results in charge sensitive changes in the solvent dynamics. Complex formation between the positively charged FNR:NADP+ pre-complex and the negatively charged PetF is not only entropically favored, but in addition the solvent reorganization into more bulk-like water assists the molecular recognition process. The change in hydration dynamics observed here suggests that the interaction with the solvent plays a significant role in mediating electron transfer processes between proteins.


Asunto(s)
Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Modelos Moleculares , Solventes/química , Agua/química , Oxidación-Reducción , Unión Proteica , Estructura Cuaternaria de Proteína , Análisis Espectral , Electricidad Estática
10.
Proc Natl Acad Sci U S A ; 114(15): 3843-3848, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28348243

RESUMEN

The kinetics of hydrogen oxidation and evolution by [FeFe]-hydrogenases have been investigated by electrochemical impedance spectroscopy-resolving factors that determine the exceptional activity of these enzymes, and introducing an unusual and powerful way of analyzing their catalytic electron transport properties. Attached to an electrode, hydrogenases display reversible electrocatalytic behavior close to the 2H+/H2 potential, making them paradigms for efficiency: the electrocatalytic "exchange" rate (measured around zero driving force) is therefore an unusual parameter with theoretical and practical significance. Experiments were carried out on two [FeFe]-hydrogenases, CrHydA1 from the green alga Chlamydomonas reinhardtii, which contains only the active-site "H cluster," and CpI from the fermentative anaerobe Clostridium pasteurianum, which contains four low-potential FeS clusters that serve as an electron relay in addition to the H cluster. Data analysis yields catalytic exchange rates (at the formal 2H+/H2 potential, at 0 °C) of 157 electrons (78 molecules H2) per second for CpI and 25 electrons (12 molecules H2) per second for CrHydA1. The experiments show how the potential dependence of catalytic electron flow comprises frequency-dependent and frequency-independent terms that reflect the proficiencies of the catalytic site and the electron transfer pathway in each enzyme. The results highlight the "wire-like" behavior of the Fe-S electron relay in CpI and a low reorganization energy for electron transfer on/off the H cluster.


Asunto(s)
Hidrógeno/química , Hidrogenasas/metabolismo , Catálisis , Dominio Catalítico , Chlamydomonas reinhardtii/enzimología , Clostridium/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Cinética , Modelos Moleculares , Conformación Proteica
11.
Nano Lett ; 19(9): 6621-6628, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31407917

RESUMEN

Sequence-specific aptamers act as functional scaffolds for the assembly of photosynthetic model systems. The Ru(II)-tris-bipyridine photosensitizer is conjugated by different binding modes to the antityrosinamide aptamer to yield a set of photosensitizer-aptamer binding scaffolds. The N-methyl-N'-(3-aminopropane)-4,4'-bipyridinium electron acceptor, MV2+, is covalently linked to tyrosinamide, TA, to yield the conjugate TA-MV2+. The tyrosinamide unit in TA-MV2+ acts as a ligand for anchoring TA-MV2+ to the Ru(II)-tris-bipyridine-aptamer scaffold, generating the diversity of photosensitizer-aptamer/electron acceptor supramolecular conjugates. Effective electron transfer quenching in the photosynthetic model systems is demonstrated, and the quenching efficiencies are controlled by the structural features of the conjugates. The redox species generated by the photosensitizer-aptamer/electron acceptor supramolecular systems mediate the ferredoxin-NADP+ reductase, FNR, catalyzed synthesis of NADPH, and the Pt-nanoparticle-catalyzed evolution of hydrogen (H2). The novelty of the study rests on the unprecedented use of aptamer scaffolds as functional units for organizing photosynthetic model systems.


Asunto(s)
Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Modelos Químicos , Fármacos Fotosensibilizantes/química , Fotosíntesis , Platino (Metal)/química , Transporte de Electrón , Ferredoxina-NADP Reductasa/química , NADP/química
12.
Angew Chem Int Ed Engl ; 59(23): 9163-9170, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32125762

RESUMEN

All-DNA scaffolds act as templates for the organization of photosystem I model systems. A series of DNA templates composed of ZnII -protoporphyrin IX (ZnII PPIX)-functionalized G-quadruplex conjugated to the 3'- or 5'-end of the tyrosinamide (TA) aptamer and ZnII PPIX/G-quadruplex linked to the 3'- and 5'-ends of the TA aptamer through a four-thymidine bridge. Effective photoinduced electron transfer (ET) from ZnII PPIX/G-quadruplex to bipyridinium-functionalized tyrosinamide, TA-MV2+ , bound to the TA aptamer units is demonstrated. The effectiveness of the primary ET quenching of ZnII PPIX/G-quadruplex by TA-MV2+ controls the efficiency of the generation of TA-MV+. . The photosystem-controlled formation of TA-MV+. by the different photosystems dictates the secondary activation of the ET cascade corresponding to the ferredoxin-NADP+ reductase (FNR)-catalysed reduction of NADP+ to NADPH by TA-MV+. , and the sequestered alcohol dehydrogenase catalysed reduction of acetophenone to 1-phenylethanol by NADPH.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , ADN/química , ADN/metabolismo , G-Cuádruplex , Modelos Biológicos , Fotosíntesis , Protoporfirinas/metabolismo , Transporte de Electrón
13.
J Am Chem Soc ; 141(44): 17721-17728, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31609603

RESUMEN

The [FeFe]-hydrogenases catalyze the uptake and evolution of hydrogen with unmatched speed at low overpotential. However, oxygen induces the degradation of the unique [6Fe-6S] cofactor within the active site, termed the H-cluster. We used X-ray structural analyses to determine possible modes of irreversible oxygen-driven inactivation. To this end, we exposed crystals of the [FeFe]-hydrogenase CpI from Clostridium pasteurianum to oxygen and quantitatively investigated the effects on the H-cluster structure over several time points using multiple data sets, while correlating it to decreases in enzyme activity. Our results reveal the loss of specific Fe atoms from both the diiron (2FeH) and the [4Fe-4S] subcluster (4FeH) of the H-cluster. Within the 2FeH, the Fe atom more distal to the 4FeH is strikingly more affected than the more proximal Fe atom. The 4FeH interconverts to a [2Fe-2S] cluster in parts of the population of active CpIADT, but not in crystals of the inactive apoCpI initially lacking the 2FeH. We thus propose two parallel processes: dissociation of the distal Fe atom and 4FeH interconversion. Both pathways appear to play major roles in the oxidative damage of [FeFe]-hydrogenases under electron-donor deprived conditions probed by our experimental setup.

14.
J Am Chem Soc ; 141(1): 472-481, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30545220

RESUMEN

[FeFe] hydrogenases interconvert H2 into protons and electrons reversibly and efficiently. The active site H-cluster is composed of two sites: a unique [2Fe] subcluster ([2Fe]H) covalently linked via cysteine to a canonical [4Fe-4S] cluster ([4Fe-4S]H). Both sites are redox active and electron transfer is proton-coupled, such that the potential of the H-cluster lies very close to the H2 thermodynamic potential, which confers the enzyme with the ability to operate quickly in both directions without energy losses. Here, one of the cysteines coordinating [4Fe-4S]H (Cys362) in the [FeFe] hydrogenase from the green algae Chlamydomonas reinhardtii ( CrHydA1) was exchanged with histidine and the resulting C362H variant was shown to contain a [4Fe-4S] cluster with a more positive redox potential than the wild-type. The change in the [4Fe-4S] cluster potential resulted in a shift of the catalytic bias, diminishing the H2 production activity but giving significantly higher H2 oxidation activity, albeit with a 200 mV overpotential requirement. These results highlight the importance of the [4Fe-4S] cluster as an electron injection site, modulating the redox potential and the catalytic properties of the H-cluster.


Asunto(s)
Biocatálisis , Hidrogenasas/química , Hidrogenasas/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Dominio Catalítico , Chlamydomonas reinhardtii/enzimología , Hidrogenasas/genética , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción
15.
J Am Chem Soc ; 141(43): 17394-17403, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31580662

RESUMEN

Hydrogenases are metalloenzymes that catalyze the conversion of protons and molecular hydrogen, H2. [FeFe]-hydrogenases show particularly high rates of hydrogen turnover and have inspired numerous compounds for biomimetic H2 production. Two decades of research on the active site cofactor of [FeFe]-hydrogenases have put forward multiple models of the catalytic proceedings. In comparison, our understanding of proton transfer is poor. Previously, residues were identified forming a hydrogen-bonding network between active site cofactor and bulk solvent; however, the exact mechanism of catalytic proton transfer remained inconclusive. Here, we employ in situ infrared difference spectroscopy on the [FeFe]-hydrogenase from Chlamydomonas reinhardtii evaluating dynamic changes in the hydrogen-bonding network upon photoreduction. While proton transfer appears to be impaired in the oxidized state (Hox), the presented data support continuous proton transfer in the reduced state (Hred). Our analysis allows for a direct, molecular unique assignment to individual amino acid residues. We found that transient protonation changes of glutamic acid residue E141 and, most notably, arginine R148 facilitate bidirectional proton transfer in [FeFe]-hydrogenases.


Asunto(s)
Hidrogenasas/química , Proteínas Hierro-Azufre/química , Dominio Catalítico , Chlamydomonas reinhardtii/enzimología , Ácido Glutámico/química , Enlace de Hidrógeno , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Protones , Serina/química , Espectroscopía Infrarroja por Transformada de Fourier
16.
Eur J Neurosci ; 50(12): 3958-3967, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31448468

RESUMEN

Fibromyalgia syndrome (FMS) is a chronic pain syndrome. Neuroimaging studies provided evidence of altered gray matter volume (GMV) in FMS but, similarly, in chronic pain of other origin as well. Therefore, the purpose of this study was to evaluate the disease specificity of GMV alterations in FMS by direct comparison. Structural MRI data of the brain were acquired in 25 females with FMS and two different control groups: 21 healthy subjects and 23 patients with osteoarthritis. Regional GMVs were compared by voxel-based morphometry and additional ROI-analyses. In conclusion, we did not identify significant GMV alterations in either FMS or OA patients compared to healthy controls when adopting a conservative statistical approach with multiple comparison correction. However, even under a more liberal approach no FMS-specific GMV changes were found because both pain groups presented increased gray matter volumes in the precentral gyrus and decreased GMV in the angular gyrus/middle occipital gyrus and middle temporal gyrus in comparison with healthy controls. Since no differences between both pain groups could be detected cortical GMV changes in FMS should not be interpreted as FMS-specific but might rather reflect changes in chronic pain in general. This previously held notion is confirmed in this study by direct comparison with a control group consisting of another pain disorder.


Asunto(s)
Fibromialgia/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Dolor Musculoesquelético/fisiopatología , Neuroimagen , Adulto , Dolor Crónico/fisiopatología , Femenino , Fibromialgia/patología , Fibromialgia/fisiopatología , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Dolor Musculoesquelético/patología
17.
Plant Physiol ; 177(4): 1639-1649, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29976836

RESUMEN

Some microalgae, such as Chlamydomonas reinhardtii, harbor a highly flexible photosynthetic apparatus capable of using different electron acceptors, including carbon dioxide (CO2), protons, or oxygen (O2), allowing survival in diverse habitats. During anaerobic induction of photosynthesis, molecular O2 is produced at photosystem II, while at the photosystem I acceptor side, the reduction of protons into hydrogen (H2) by the plastidial [FeFe]-hydrogenases primes CO2 fixation. Although the interaction between H2 production and CO2 fixation has been studied extensively, their interplay with O2 produced by photosynthesis has not been considered. By simultaneously measuring gas exchange and chlorophyll fluorescence, we identified an O2 photoreduction mechanism that functions during anaerobic dark-to-light transitions and demonstrate that flavodiiron proteins (Flvs) are the major players involved in light-dependent O2 uptake. We further show that Flv-mediated O2 uptake is critical for the rapid induction of CO2 fixation but is not involved in the creation of the micro-oxic niches proposed previously to protect the [FeFe]-hydrogenase from O2 By studying a mutant lacking both hydrogenases (HYDA1 and HYDA2) and both Flvs (FLVA and FLVB), we show that the induction of photosynthesis is strongly delayed in the absence of both sets of proteins. Based on these data, we propose that Flvs are involved in an important intracellular O2 recycling process, which acts as a relay between H2 production and CO2 fixation.


Asunto(s)
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/fisiología , Hidrógeno/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Anaerobiosis , Clorofila/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Fluorescencia , Hidrogenasas/metabolismo , Mutación , Procesos Fotoquímicos , Fotosíntesis/fisiología
18.
Inorg Chem ; 58(6): 4000-4013, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30802044

RESUMEN

[FeFe]-hydrogenases are efficient biological hydrogen conversion catalysts and blueprints for technological fuel production. The relations between substrate interactions and electron/proton transfer events at their unique six-iron cofactor (H-cluster) need to be elucidated. The H-cluster comprises a four-iron cluster, [4Fe4S], linked to a diiron complex, [FeFe]. We combined 57Fe-specific X-ray nuclear resonance scattering experiments (NFS, nuclear forward scattering; NRVS, nuclear resonance vibrational spectroscopy) with quantum-mechanics/molecular-mechanics computations to study the [FeFe]-hydrogenase HYDA1 from a green alga. Selective 57Fe labeling at only [4Fe4S] or [FeFe], or at both subcomplexes was achieved by protein expression with a 57Fe salt and in vitro maturation with a synthetic diiron site precursor containing 57Fe. H-cluster states were populated under infrared spectroscopy control. NRVS spectral analyses facilitated assignment of the vibrational modes of the cofactor species. This approach revealed the H-cluster structure of the oxidized state (Hox) with a bridging carbon monoxide at [FeFe] and ligand rearrangement in the CO-inhibited state (Hox-CO). Protonation at a cysteine ligand of [4Fe4S] in the oxidized state occurring at low pH (HoxH) was indicated, in contrast to bridging hydride binding at [FeFe] in a one-electron reduced state (Hred). These findings are direct evidence for differential protonation either at the four-iron or diiron subcomplex of the H-cluster. NFS time-traces provided Mössbauer parameters such as the quadrupole splitting energy, which differ among cofactor states, thereby supporting selective protonation at either subcomplex. In combination with data for reduced states showing similar [4Fe4S] protonation as HoxH without (Hred') or with (Hhyd) a terminal hydride at [FeFe], our results imply that coordination geometry dynamics at the diiron site and proton-coupled electron transfer to either the four-iron or the diiron subcomplex discriminate catalytic and regulatory functions of [FeFe]-hydrogenases. We support a reaction cycle avoiding diiron site geometry changes during rapid H2 turnover.

19.
Biochim Biophys Acta Bioenerg ; 1859(1): 28-41, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28919500

RESUMEN

[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN-) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3- complex with the net spin on Fed whereas Hox-CO shows an apical CN- at Fed in a [4Fe4S-2Fe(CO)]3- complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3- complex with an apical superoxide (O2-) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3- complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2- protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Hidrógeno/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Oxígeno/química , Proteínas de Plantas/química , Dominio Catalítico
20.
Plant J ; 90(6): 1134-1143, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28295776

RESUMEN

Molecular hydrogen (H2 ) can be produced in green microalgae by [FeFe]-hydrogenases as a direct product of photosynthesis. The Chlamydomonas reinhardtii hydrogenase HYDA1 contains a catalytic site comprising a classic [4Fe4S] cluster linked to a unique 2Fe sub-cluster. From in vitro studies it appears that the [4Fe4S] cluster is incorporated first by the housekeeping FeS cluster assembly machinery, followed by the 2Fe sub-cluster, whose biosynthesis requires the specific maturases HYDEF and HYDG. To investigate the maturation process in vivo, we expressed HYDA1 from the C. reinhardtii chloroplast and nuclear genomes (with and without a chloroplast transit peptide) in a hydrogenase-deficient mutant strain, and examined the cellular enzymatic hydrogenase activity, as well as in vivo H2 production. The transformants expressing HYDA1 from the chloroplast genome displayed levels of H2 production comparable to the wild type, as did the transformants expressing full-length HYDA1 from the nuclear genome. In contrast, cells equipped with cytoplasm-targeted HYDA1 produced inactive enzyme, which could only be activated in vitro after reconstitution of the [4Fe4S] cluster. This indicates that the HYDA1 FeS cluster can only be built by the chloroplastic FeS cluster assembly machinery. Further, the expression of a bacterial hydrogenase gene, CPI, from the C. reinhardtii chloroplast genome resulted in H2 -producing strains, demonstrating that a hydrogenase with a very different structure can fulfil the role of HYDA1 in vivo and that overexpression of foreign hydrogenases in C. reinhardtii is possible. All chloroplast transformants were stable and no toxic effects were seen from HYDA1 or CPI expression.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Hidrogenasas/genética , Proteínas Hierro-Azufre/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA