Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33436410

RESUMEN

Rev-Erbß is a nuclear receptor that couples circadian rhythm, metabolism, and inflammation. Heme binding to the protein modulates its function as a repressor, its stability, its ability to bind other proteins, and its activity in gas sensing. Rev-Erbß binds Fe3+-heme more tightly than Fe2+-heme, suggesting its activities may be regulated by the heme redox state. Yet, this critical role of heme redox chemistry in defining the protein's resting state and function is unknown. We demonstrate by electrochemical and whole-cell electron paramagnetic resonance experiments that Rev-Erbß exists in the Fe3+ form within the cell allowing the protein to be heme replete even at low concentrations of labile heme in the nucleus. However, being in the Fe3+ redox state contradicts Rev-Erb's known function as a gas sensor, which dogma asserts must be Fe2+ This paper explains why the resting Fe3+ state is congruent both with heme binding and cellular gas sensing. We show that the binding of CO/NO elicits a striking increase in the redox potential of the Fe3+/Fe2+ couple, characteristic of an EC mechanism in which the unfavorable Electrochemical reduction of heme is coupled to the highly favorable Chemical reaction of gas binding, making the reduction spontaneous. Thus, Fe3+-Rev-Erbß remains heme-loaded, crucial for its repressor activity, and undergoes reduction when diatomic gases are present. This work has broad implications for proteins in which ligand-triggered redox changes cause conformational changes influencing its function or interprotein interactions (e.g., between NCoR1 and Rev-Erbß). This study opens up the possibility of CO/NO-mediated regulation of the circadian rhythm through redox changes in Rev-Erbß.


Asunto(s)
Monóxido de Carbono/metabolismo , Electrones , Hemo/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Transporte Biológico , Monóxido de Carbono/química , Ritmo Circadiano/fisiología , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hemo/química , Humanos , Hierro/química , Modelos Biológicos , Modelos Moleculares , Óxido Nítrico/química , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética
2.
Chem Rev ; 121(24): 14682-14905, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34902255

RESUMEN

Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.


Asunto(s)
Hemoproteínas , Óxido Nítrico , Electrónica , Hemo/química , Hierro/química , Óxido Nítrico/química , Óxidos de Nitrógeno/química
3.
Angew Chem Int Ed Engl ; 60(36): 19836-19842, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34101958

RESUMEN

Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. µ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of µ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.


Asunto(s)
Calcio/química , Cobre/química , Sitios de Unión , Iones/química , Estructura Molecular
4.
Inorg Chem ; 59(4): 2144-2162, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32030987

RESUMEN

Manganese porphyrins are used as catalysts in the oxidation of olefins and nonactivated hydrocarbons. Key to these reactions are high-valent Mn-(di)oxo species, for which [Mn(Porph)(X)] serve as precursors. To elucidate their properties, it is crucial to understand the interaction of the Mn center with the porphyrin ligand. Our study focuses on simple high-spin [MnIII(TPP)X] (X = F, Cl, I, Br) complexes with emphasis on the spectroscopic properties of [MnIII(TPP)Cl], using variable-temperature variable-field magnetic circular dichroism spectroscopy and time-dependent density functional theory to help with band assignments. The optical properties of [MnIII(TPP)Cl] are complicated and unusual, with a Soret band showing a high-intensity feature at 21050 cm-1 and a broad band that spans 23200-31700 cm-1. The 15000-18500 cm-1 region shows the Cl(px/y) → dπ (CT(Cl,π)), Q band, and overlap-forbidden Cl(px/y)_dπ → dx2-y2 transitions that gain intensity from the strongly allowed π → π*(0) transition. The 20000-21000 cm-1 region displays the prominent pseudo A-type signal of the Soret band. The strongly absorbing features at 22500-28000 cm-1 exhibit A1u⟨79⟩/A2u⟨81⟩ → dπ, CT(Cl,π/σ), and symmetry-forbidden CT character, mixed with the π → π*(0) transition. The strong dx2-y2_B1g⟨80⟩ orbital interaction drives the ground-state MO mixing. Importantly, the splitting of the Soret band is explained by strong mixing of the porphyrin A2u(π)⟨81⟩ and the Cl(pz)_dz2 orbitals. Through this direct orbital pathway, the π → π*(0) transition acquires intrinsic metal-d → porphyrin CT character, where the π → π*(0) intensity is then transferred into the high-energy CT region of the optical spectrum. The heavier halide complexes support this conclusion and show enhanced orbital mixing and drastically increased Soret band splittings, where the 21050 cm-1 band shifts to lower energy and the high-energy features in the 23200-31700 cm-1 range increase further in intensity, compared to the chloro complex.

5.
Dalton Trans ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093017

RESUMEN

C-Nitroso compounds (RNO, R = alkyl and aryl) are byproducts of drug metabolism and bind to heme proteins, and their heme-RNO adducts are isoelectronic to ferrous nitroxyl (NO-/HNO) complexes. Importantly, heme-HNO compounds are key intermediates in the reduction of NO to N2O and nitrite to ammonium in the nitrogen cycle. Ferrous heme-RNO complexes act as stable analogs of these species, potentially allowing for the investigation of the vibrational and electronic properties of unstable heme-HNO intermediates. In this paper, a series of six-coordinate ferrous heme-RNO complexes (where R = iPr and Ph) were prepared using the TPP2- and 3,5-Me-BAFP2- co-ligands, and tetrahydrofuran, pyridine, and 1-methylimidazole as the axial ligands (bound trans to RNO). These complexes were characterized using different spectroscopic methods and X-ray crystallography. The complex [Fe(TPP)(THF)(iPrNO)] was further utilized for nuclear resonance vibrational spectroscopy (NRVS), allowing for the detailed assignment of the Fe-N(R)O vibrations of a heme-RNO complex for the first time. The vibrational properties of these species were then correlated with those of their HNO analogs, using DFT calculations. Our studies support previous findings that RNO ligands in ferrous heme complexes do not elicit a significant trans effect. In addition, the complexes are air-stable, and do not show any reactivity of their RNO ligands towards NO. So although ferrous heme-RNO complexes are suitable structural and electronic models for their HNO analogs, they are unsuitable to model the reactivity of heme-HNO complexes. We further investigated the reaction of our heme-RNO complexes with different Lewis acids. Here, [Fe(TPP)(THF)(iPrNO)] was found to be unreactive towards Lewis acids. In contrast, [Fe(3,5-Me-BAFP)(iPrNO)2] is reactive towards all of the Lewis acids investigated here, but in most cases the iron center is simply oxidized, resulting in the loss of the iPrNO ligand. In the case of the Lewis acid B2(pin)2, the reduced product [Fe(3,5-Me-BAFP)(iPrNH2)(iPrNO)] was identified by X-ray crystallography.

6.
J Inorg Biochem ; 246: 112280, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37352656

RESUMEN

Bacterial NO Reductase (NorBC or cNOR) is a membrane-bound enzyme found in denitrifying bacteria that catalyzes the two-electron reduction of NO to N2O and water. The mechanism by which NorBC operates is highly debated, due to the fact that this enzyme is difficult to work with, and no intermediates of the NO reduction reaction could have been identified so far. The unique active site of NorBC consists of a heme b3/non-heme FeB diiron center. Synthetic model complexes provide the opportunity to obtain insight into possible mechanistic alternatives for this enzyme. In this paper, we present three new synthetic model systems for NorBC, consisting of a tetraphenylporphyrin-derivative clicked to modified BMPA-based ligands (BMPA = bis(methylpyridyl)amine) that model the non-heme site in the enzyme. These complexes have been characterized by EPR, IR and UV-Vis spectroscopy. The reactivity with NO was then investigated, and it was found that the complex with the BMPA-carboxylate ligand as the non-heme component has a very low affinity for NO at the non-heme iron site. If the carboxylate functional group is replaced with a phenolate or pyridine group, reactivity is restored and formation of a diiron dinitrosyl complex was observed. Upon one-electron reduction of the nitrosylated complexes, following the semireduced pathway for NO reduction, formation of dinitrosyl iron complexes (DNICs) was observed in all three cases, but no N2O could be detected.


Asunto(s)
Química Clic , Óxido Nítrico , Óxido Nítrico/metabolismo , Hierro/química , Bacterias/metabolismo , Hemo/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA