Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Sci Technol ; 58(28): 12563-12574, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38950186

RESUMEN

Urban air pollution can vary sharply in space and time. However, few monitoring strategies can concurrently resolve spatial and temporal variation at fine scales. Here, we present a new measurement-driven spatiotemporal modeling approach that transcends the individual limitations of two complementary sampling paradigms: mobile monitoring and fixed-site sensor networks. We develop, validate, and apply this model to predict black carbon (BC) using data from an intensive, 100-day field study in West Oakland, CA. Our spatiotemporal model exploits coherent spatial patterns derived from a multipollutant mobile monitoring campaign to fill spatial gaps in time-complete BC data from a low-cost sensor network. Our model performs well in reconstructing patterns at fine spatial and temporal resolution (30 m, 15 min), demonstrating strong out-of-sample correlations for both mobile (Pearson's R ∼ 0.77) and fixed-site measurements (R ∼ 0.95) while revealing features that are not effectively captured by a single monitoring approach in isolation. The model reveals sharp concentration gradients near major emission sources while capturing their temporal variability, offering valuable insights into pollution sources and dynamics.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Carbono , Hollín , Ciudades
2.
Environ Sci Technol ; 58(1): 33-42, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38109378

RESUMEN

Electrifying freight trucks will be key to alleviating air pollution burdens on disadvantaged communities and mitigating climate change. The United States plans to pursue this aim by adding vehicle charging infrastructure along specific freight corridors. This study explores the coevolution of the electricity grid and freight trucking landscape using an integrated assessment framework to identify when each interstate and drayage corridor becomes advantageous to electrify from a climate and human health standpoint. Nearly all corridors achieve greenhouse gas emission reductions if electrified now. Most can reduce health impacts from air pollution if electrified by 2040 although some corridors in the Midwest, South, and Mid-Atlantic regions remain unfavorable to electrify from a human health standpoint, absent policy support. Recent policy, namely, the Inflation Reduction Act, accelerates this timeline to 2030 for most corridors and results in net human health benefits on all corridors by 2050, suggesting that near-term investments in truck electrification, particularly drayage corridors, can meaningfully reduce climate and health burdens.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Estados Unidos , Humanos , Emisiones de Vehículos/análisis , Vehículos a Motor , Contaminación del Aire/análisis , Electricidad , Contaminantes Atmosféricos/análisis
3.
Environ Sci Technol ; 57(26): 9693-9701, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37329338

RESUMEN

The effects of precursor emission controls on air quality can vary greatly depending on where emission reductions occur. We use the adjoint of the Community Multiscale Air Quality (CMAQ) model to evaluate impacts of spatially targeted NOx emission reductions on odd oxygen (Ox = O3 + NO2). The air quality responses studied here include one population-weighted regionwide and three city-level receptors in Central California. We map high-priority locations for NOx control and their changes over decadal time scales. The desirability of NOx-focused emission control programs has increased between 2000 and 2022. We find for present-day conditions that reducing NOx emissions by 28% from targeted high-priority locations can achieve 60% of the air quality benefits of uniform NOx reductions at all locations. High-priority source locations are found to differ for individual city-level versus regionwide receptors of interest. While high-impact emission hotspots for improving city-level metrics are found within the city itself or closely adjacent, the spatial pattern of emission hotspots for improving regionwide air quality is more complex and requires comprehensive consideration of upwind sources. Results of this study can help to inform strategic decision-making at local and regional levels about where to prioritize emission control efforts.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Ozono/análisis , Óxidos de Nitrógeno/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Oxígeno , Monitoreo del Ambiente/métodos
4.
Environ Sci Technol ; 57(49): 20689-20698, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033264

RESUMEN

The extent to which emission control technologies and policies have reduced anthropogenic NOx emissions from motor vehicles is large but uncertain. We evaluate a fuel-based emission inventory for southern California during the June 2021 period, coinciding with the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. A modified version of the Fuel-based Inventory of Vehicle Emissions (FIVE) is presented, incorporating 1.3 km resolution gridding and a new light-/medium-duty diesel vehicle category. NOx concentrations and weekday-weekend differences were predicted using the WRF-Chem model and evaluated using satellite and aircraft observations. Model performance was similar on weekdays and weekends, indicating appropriate day-of-week scaling of NOx emissions and a reasonable distribution of emissions by sector. Large observed weekend decreases in NOx are mainly due to changes in on-road vehicle emissions. The inventory presented in this study suggests that on-road vehicles were responsible for 55-72% of the NOx emissions in the South Coast Air Basin, compared to the corresponding fraction (43%) in the planning inventory from the South Coast Air Quality Management District. This fuel-based inventory suggests on-road NOx emissions that are 1.5 ± 0.4, 2.8 ± 0.6, and 1.3 ± 0.7 times the reference EMFAC model estimates for on-road gasoline, light- and medium-duty diesel, and heavy-duty diesel, respectively.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Emisiones de Vehículos/análisis , Los Angeles , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Vehículos a Motor , Óxidos de Nitrógeno/análisis
5.
Environ Sci Technol ; 56(11): 7074-7082, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35467865

RESUMEN

Ground-level ozone adversely affects human health and ecosystems. The effectiveness of control programs depends on which precursor(s) are controlled, by how much, and where and when emission reductions occur. We use the adjoint of the Community Multiscale Air Quality model to investigate odd oxygen (Ox ≡ O3 + NO2) sensitivities in California's San Joaquin Valley (SJV) to precursor emissions from local and upwind sources. Sensitivities are mapped and disaggregated by hour and day. Taken together, impacts of precursor emissions in the San Francisco Bay area and Sacramento Valley are similar in magnitude to impacts of local SJV emissions. Same-day emission sensitivities are mostly attributable to local sources, with the most influential anthropogenic emissions of VOCs (volatile organic compounds) and NOx (nitrogen oxides) occurring in the morning (9-11 am) and early afternoon hours (1-3 pm), respectively. For the northernmost SJV receptor, the influence from Sacramento Valley emissions peaks 5-6 h later than Bay area emissions; this difference diminishes for SJV receptors located further downwind. Results show a shift toward more NOx-sensitive conditions in the afternoon with all but the southernmost receptor shifting from VOC- to NOx-sensitive conditions. We also evaluate opportunities to control pollution through shifts in precursor emission location and timing.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Humanos , Ozono/química , San Francisco
6.
Environ Sci Technol ; 55(18): 12250-12260, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34505515

RESUMEN

Exposure to diesel-related air pollution, which includes black carbon (BC) as a major component of the particulate matter emitted in engine exhaust, is a known human health hazard. The resulting health burden falls heavily on vulnerable communities located close to major sources including highways, rail yards, and ports. Determination of source contributions to the overall pollution burden is challenging due to collinearity in the exhaust composition profiles for relevant sources including heavy-duty diesel trucks, railroad locomotives, cargo-handling equipment, and marine engines. Additionally, the impact of each source depends not just on the magnitude of emissions but on its location relative to receptors as well as on meteorology. We modeled source-resolved BC concentrations in West Oakland, California, at a high (150 m) spatial resolution using the Weather Research and Forecasting model. The ability of the model to predict hourly and 24 h average BC concentrations is evaluated for a 100-day period in summer 2017 when BC was measured at 100 sites within the community. We find that a community monitoring site is representative of population-weighted average BC exposure in the community. Major contributing sources to BC in West Oakland include on-road diesel trucks (44 ± 5%) and three off-road diesel sources: ocean-going vessels (19 ± 1%), railroad locomotives (16 ± 2%), and harbor craft such as tugboats and ferries (11 ± 1%).


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Carbono , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Emisiones de Vehículos/análisis
7.
Environ Sci Technol ; 55(10): 6655-6664, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33951912

RESUMEN

On-road vehicles continue to be a major source of nitrogen oxide (NOx) emissions in the United States and in other countries around the world. The goal of this study is to compare and evaluate emission inventories and long-term trends in vehicular NOx emissions. Taxable fuel sales data and in-use measurements of emission factors are combined to generate fuel-based NOx emission inventories for California and the US over the period 1990-2020. While gasoline and diesel fuel sales increased over the last three decades, total on-road NOx emissions declined by approximately 70% since 1990, with a steeper rate of decrease after 2004 when heavy-duty diesel NOx emission controls finally started to gain traction. In California, additional steps have been taken to accelerate the introduction of new heavy-duty engines equipped with selective catalytic reduction systems, resulting in a 48% decrease in diesel NOx emissions in California compared to a 32% decrease nationally since 2010. California EMFAC model predictions are in good agreement with fuel-based inventory results for gasoline engines and are higher than fuel-based estimates for diesel engines prior to the mid-2010s. Similar to the findings of recent observational and modeling studies, there are discrepancies between the fuel-based inventory and national MOVES model estimates. MOVES predicts a steeper decrease in NOx emissions and predicts higher NOx emissions from gasoline engines over the entire period from 1990 to 2020.


Asunto(s)
Contaminantes Atmosféricos , Gasolina , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Gasolina/análisis , Vehículos a Motor , Óxidos de Nitrógeno/análisis , Emisiones de Vehículos/análisis
8.
Environ Sci Technol ; 53(24): 14568-14576, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31686501

RESUMEN

Emissions from thousands of in-use heavy-duty diesel trucks were sampled at a highway and an arterial street location in the San Francisco Bay Area, spanning a time period when use of diesel particle filters (DPFs) and selective catalytic reduction (SCR) increased rapidly. At the highway site where a diverse mix of trucks is observed, SCR systems on 2010 and newer engines reduce emitted nitrogen oxides (NOx) by 87 ± 5% relative to pre-2004 engines. SCR also mitigates DPF-related increases in nitrogen dioxide (NO2) emissions. However, a majority of trucks had in-use NOx emission rates that exceeded applicable emission standards. SCR systems increase emissions of nitrous oxide (N2O) and ammonia (NH3) from near-zero levels to 0.93 ± 0.13 and 0.18 ± 0.07 g kg-1, respectively. Emissions of all nitrogenous species and especially NH3 are skewed; 10% of trucks contribute 95% of the on-road fleet's total NH3 emissions. Similar emission changes are observed at the arterial street site where exclusively drayage trucks operate. The environmental effects of decreased black carbon, NOx, and carbon dioxide (CO2) emissions and increased N2O and NH3 emissions due to the rapid adoption of DPF and SCR systems by the California truck fleet are: (1) a 65% net decrease in the social cost of statewide exposure to diesel truck emissions (-3.3 billion 2018 US dollars per year), and (2) a 3% net decrease in the global warming potential-weighted emission factor (-27 g CO2-eq km-1).


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Ambiente , Monitoreo del Ambiente , Vehículos a Motor , Nitrógeno , San Francisco
9.
Environ Sci Technol ; 52(20): 11913-11921, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30153019

RESUMEN

Diesel particle filters (DPFs) are standard equipment on heavy-duty diesel trucks with 2007 and newer engines in the U.S. This study evaluates the performance and durability of these filters. Black carbon (BC) emission rates from several thousand heavy-duty trucks were measured at the Port of Oakland and Caldecott Tunnel over multiple years as California regulations accelerated the adoption of DPFs. As DPF use increased, fleet-average BC emissions decreased, and emission factor distributions became more skewed. Relative to 2004-2006 engines without filters, DPFs reduced BC emission rates by 65-70% for 2007-2009 engines and by >90% for 2010+ engines. Average BC emission rates for 2007-2009 engines increased by 50-67% in 2015 relative to measurements made 1-2 years earlier. Some trucks in this cohort have become high-emitters, indicating that some DPFs are no longer working well. At the Port, where DPFs were universal in 2015, high-emitting 2007-2009 engines (defined here as emitting >1 g BC kg-1) comprised 7% of the fleet but were responsible for 65% of the total BC emitted. These observations raise concerns about DPF durability and the prospects for fully mitigating adverse effects of diesel particulate matter on human health and the environment.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , California , Vehículos a Motor , Material Particulado
10.
Environ Sci Technol ; 51(3): 1074-1093, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28000440

RESUMEN

Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.


Asunto(s)
Gasolina , Emisiones de Vehículos , Aerosoles , Contaminantes Atmosféricos , Vehículos a Motor , Compuestos Orgánicos
11.
Environ Sci Technol ; 49(8): 5178-88, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25793355

RESUMEN

A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Hollín/análisis , California , Carbono/análisis , Los Angeles , Emisiones de Vehículos/análisis
12.
Environ Sci Technol ; 49(12): 7276-84, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26001097

RESUMEN

The adjoint of the Community Multiscale Air Quality (CMAQ) model at 1 km horizontal resolution is used to map emissions that contribute to ambient concentrations of benzene and diesel black carbon (BC) in the San Francisco Bay area. Model responses of interest include population-weighted average concentrations for three highly polluted receptor areas and the entire air basin. We consider both summer (July) and winter (December) conditions. We introduce a novel approach to evaluate adjoint sensitivity calculations that complements existing methods. Adjoint sensitivities to emissions are found to be accurate to within a few percent, except at some locations associated with large sensitivities to emissions. Sensitivity of model responses to emissions is larger in winter, reflecting weaker atmospheric transport and mixing. The contribution of sources located within each receptor area to the same receptor's air pollution burden increases from 38-74% in summer to 56-85% in winter. The contribution of local sources is higher for diesel BC (62-85%) than for benzene (38-71%), reflecting the difference in these pollutants' atmospheric lifetimes. Morning (6-9am) and afternoon (4-7 pm) commuting-related emissions dominate region-wide benzene levels in winter (14 and 25% of the total response, respectively). In contrast, afternoon rush hour emissions do not contribute significantly in summer. Similar morning and afternoon peaks in sensitivity to emissions are observed for the BC response; these peaks are shifted toward midday because most diesel truck traffic occurs during off-peak hours.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Benceno/análisis , Monitoreo del Ambiente/métodos , Gasolina/análisis , Hollín/análisis , Modelos Teóricos , San Francisco , Estaciones del Año , Factores de Tiempo , Emisiones de Vehículos/análisis
13.
Environ Sci Technol ; 49(14): 8864-71, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26083075

RESUMEN

Effects of fleet modernization and use of diesel particle filters (DPF) and selective catalytic reduction (SCR) on heavy-duty diesel truck emissions were studied at the Port of Oakland in California. Nitrogen oxides (NOx), black carbon (BC), particle number (PN), and size distributions were measured in the exhaust plumes of ∼1400 drayage trucks. Average NOx, BC, and PN emission factors for newer engines (2010-2013 model years) equipped with both DPF and SCR were 69 ± 15%, 92 ± 32%, and 66 ± 35% lower, respectively, than 2004-2006 engines without these technologies. Intentional oxidation of NO to NO2 for DPF regeneration increased tailpipe NO2 emissions, especially from older (1994-2006) engines with retrofit DPFs. Increased deployment of advanced controls has further skewed emission factor distributions; a small number of trucks emit a disproportionately large fraction of total BC and NOx. The fraction of DPF-equipped drayage trucks increased from 2 to 99% and the median engine age decreased from 11 to 6 years between 2009 and 2013. Over this period, fleet-average BC and NOx emission factors decreased by 76 ± 22% and 53 ± 8%, respectively. Emission changes occurred rapidly compared to what would have been observed due to natural (i.e., unforced) turnover of the Port truck fleet. These results provide a preview of more widespread emission changes expected statewide and nationally in the coming years.


Asunto(s)
Filtración/instrumentación , Vehículos a Motor , Material Particulado/análisis , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , California , Catálisis , Óxidos de Nitrógeno/análisis , Hollín/análisis , Factores de Tiempo
14.
Environ Sci Technol ; 49(6): 3322-9, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25699633

RESUMEN

Ethylene glycol (HOCH2CH2OH), used as engine coolant for most on-road vehicles, is an intermediate volatility organic compound (IVOC) with a high Henry's law coefficient. We present measurements of ethylene glycol (EG) vapor in the Caldecott Tunnel near San Francisco, using a proton transfer reaction mass spectrometer (PTR-MS). Ethylene glycol was detected at mass-to-charge ratio 45, usually interpreted as solely coming from acetaldehyde. EG concentrations in bore 1 of the Caldecott Tunnel, which has a 4% uphill grade, were characterized by infrequent (approximately once per day) events with concentrations exceeding 10 times the average concentration, likely from vehicles with malfunctioning engine coolant systems. Limited measurements in tunnels near Houston and Boston are not conclusive regarding the presence of EG in sampled air. Previous PTR-MS measurements in urban areas may have overestimated acetaldehyde concentrations at times due to this interference by ethylene glycol. Estimates of EG emission rates from the Caldecott Tunnel data are unrealistically high, suggesting that the Caldecott data are not representative of emissions on a national or global scale. EG emissions are potentially important because they can lead to the formation of secondary organic aerosol following oxidation in the atmospheric aqueous phase.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Glicol de Etileno/análisis , Vehículos a Motor , Emisiones de Vehículos/análisis , Aerosoles/análisis , Boston , San Francisco , Texas , Compuestos Orgánicos Volátiles/análisis
15.
Proc Natl Acad Sci U S A ; 109(45): 18318-23, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091031

RESUMEN

Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region's fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies.


Asunto(s)
Aerosoles/análisis , Carbono/análisis , Gasolina/análisis , Compuestos Orgánicos/análisis , Emisiones de Vehículos/análisis , Monóxido de Carbono/análisis , Cromatografía de Gases y Espectrometría de Masas , Peso Molecular , Compuestos Orgánicos Volátiles/análisis
16.
Environ Sci Technol ; 48(7): 3698-706, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24621254

RESUMEN

Motor vehicles are major sources of primary organic aerosol (POA), which is a mixture of a large number of organic compounds that have not been comprehensively characterized. In this work, we apply a recently developed gas chromatography mass spectrometry approach utilizing "soft" vacuum ultraviolet photoionization to achieve unprecedented chemical characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA was characterized by number of carbon atoms (NC), number of double bond equivalents (NDBE) and degree of molecular branching. Vehicular POA was observed to predominantly contain cycloalkanes with one or more rings and one or more branched alkyl side chains (≥80%) with low abundances of n-alkanes and aromatics (<5%), similar to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring structures are most likely dominated by cyclohexane and cyclopentane rings and not larger cycloalkanes. High molecular weight combustion byproducts, that is, alkenes, oxygenates, and aromatics, were not present in significant amounts. The observed carbon number and chemical composition of motor vehicle POA was consistent with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional smaller contribution from unburned diesel fuel and a negligible contribution from unburned gasoline.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Lubricantes/análisis , Vehículos a Motor , Aceites/análisis , Compuestos Orgánicos/análisis , Emisiones de Vehículos/análisis , Alcanos/análisis , Atmósfera/química , Carbono/análisis , Cromatografía de Gases y Espectrometría de Masas , Gasolina/análisis , San Francisco
17.
Int J Behav Nutr Phys Act ; 10: 40, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23537492

RESUMEN

BACKGROUND: Intensive diet and physical activity interventions have been found to reduce cardiovascular disease (CVD) risk, but are resource intensive. The American Heart Association recently recommended motivational interviewing (MI) as an effective approach for low-intensity interventions to promote health-related outcomes such as weight loss. However, there is limited research evaluating the long-term effectiveness of MI-based interventions on health-related outcomes associated with CVD risk. The current research evaluated the effectiveness of a six-month low-intensity MI intervention in a UK primary-care setting in maintaining reductions in CVD risk factors at12 months post-intervention. METHODS: Primary-care patients were randomised to an intervention group that received standard exercise and nutrition information plus up to five face-to-face MI sessions, delivered by a physical activity specialist and registered dietician over a 6-month period, or to a minimal intervention comparison group that received the standard information only. Follow-up measures of behavioural (vigorous and moderate physical activity, walking, physical activity stage-of-change, fruit and vegetable intake, and dietary fat intake) and biomedical (weight, body mass index [BMI], blood pressure, cholesterol) outcomes were taken immediately post-intervention and at a 12-month follow-up occasion. RESULTS: Intent-to-treat analyses revealed significant differences between groups for walking and cholesterol. Obese and hypercholesterolemic patients at baseline exhibited significant improvements in BMI and cholesterol respectively among those allocated to the intervention group compared to the comparison group. Post-intervention improvements in other health-related outcomes including blood pressure, weight, and BMI were not maintained. CONCLUSIONS: The present study suggests that a low-intensity MI counselling intervention is effective in bringing about long-term changes in some, but not all, health-related outcomes (walking, cholesterol levels) associated with CVD risk. The intervention was particularly effective for patients with elevated levels of CVD risk factors at baseline. Based on these findings future interventions should be conducted in a primary care setting and target patients with high risk of CVD. Future research should investigate how the long-term gains in health-related outcomes brought about by the MI-counselling intervention in the current study could be extended to a wider range of health outcomes.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Ejercicio Físico , Hipercolesterolemia/terapia , Motivación , Entrevista Motivacional/métodos , Obesidad/terapia , Pérdida de Peso , Enfermedades Cardiovasculares/etiología , Colesterol/sangre , Femenino , Estudios de Seguimiento , Humanos , Hipercolesterolemia/sangre , Análisis de Intención de Tratar , Masculino , Persona de Mediana Edad , Infarto del Miocardio/etiología , Infarto del Miocardio/prevención & control , Obesidad/sangre , Obesidad/complicaciones , Factores de Riesgo , Resultado del Tratamiento , Caminata
18.
Environ Sci Technol ; 47(23): 13873-81, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24215572

RESUMEN

Vehicle emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), organic aerosol (OA), and black carbon (BC) were measured at the Caldecott tunnel in the San Francisco Bay Area. Measurements were made in bore 2 of the tunnel, where light-duty (LD) vehicles accounted for >99% of total traffic and heavy-duty trucks were not allowed. Prior emission studies conducted in North America have often assumed that route- or weekend-specific prohibitions on heavy-duty truck traffic imply that diesel contributions to pollutant concentrations measured in on-road settings can be neglected. However, as light-duty vehicle emissions have declined, this assumption can lead to biased results, especially for pollutants such as NOx, OA, and BC, for which diesel-engine emission rates are high compared to corresponding values for gasoline engines. In this study, diesel vehicles (mostly medium-duty delivery trucks with two axles and six tires) accounted for <1% of all vehicles observed in the tunnel but were nevertheless responsible for (18 ± 3)%, (22 ± 6)%, and (45 ± 8)% of measured NOx, OA, and BC concentrations. Fleet-average OA and BC emission factors for light-duty vehicles are, respectively, 10 and 50 times lower than for heavy-duty diesel trucks. Using measured emission factors from this study and publicly available data on taxable fuel sales, as of 2010, LD gasoline vehicles were estimated to be responsible for 85%, 18%, 18%, and 6% of emissions of CO, NOx, OA, and BC, respectively, from on-road motor vehicles in the United States.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Gasolina/análisis , Vehículos a Motor , Emisiones de Vehículos/análisis , Dióxido de Carbono/análisis , Óxidos de Nitrógeno/análisis , San Francisco , Hollín/análisis , Estados Unidos
19.
Environ Sci Technol ; 47(18): 10171-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23944938

RESUMEN

Ocean-going vessels burning high-sulfur heavy fuel oil are an important source of air pollutants, such as sulfur dioxide and particulate matter. Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle concentration data from four urban sites and two more remote sites. Measured changes in concentrations of vanadium, a specific marker for heavy fuel oil combustion, are related to overall changes in aerosol emissions from ships. We found a substantial reduction in vanadium concentrations after the fuel change and a 28-72% decrease in SO2 concentrations, with the SO2 decrease varying depending on proximity to shipping lanes. We estimate that the changes in ship fuel reduced ambient PM2.5 mass concentrations at urban sites in the Bay area by about 3.1 ± 0.6% or 0.28 ± 0.05 µg/m(3). The largest contributing factor to lower PM mass concentrations was reductions in particulate sulfate. Absolute sulfate reductions were fairly consistent across sites, whereas trace metal reductions were largest at a monitoring site in West Oakland near the port.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aceites Combustibles , Material Particulado/análisis , Sulfatos/análisis , Dióxido de Azufre/análisis , Vanadio/análisis , Contaminación del Aire/prevención & control , Bahías , Monitoreo del Ambiente , San Francisco , Navíos , Azufre
20.
Environ Sci Technol ; 47(17): 10022-31, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23915291

RESUMEN

A fuel-based approach is used to estimate long-term trends (1990-2010) in carbon monoxide (CO) emissions from motor vehicles. Non-methane hydrocarbons (NMHC) are estimated using ambient NMHC/CO ratios after controlling for nonvehicular sources. Despite increases in fuel use of ∼10-40%, CO running exhaust emissions from on-road vehicles decreased by ∼80-90% in Los Angeles, Houston, and New York City, between 1990 and 2010. The ratio of NMHC/CO was found to be 0.24 ± 0.04 mol C/mol CO over time in Los Angeles, indicating that both pollutants decreased at a similar rate and were improved by similar emission controls, whereas on-road data from other cities suggest rates of reduction in NMHC versus CO emissions may differ somewhat. Emission ratios of CO/NOx (nitrogen oxides = NO + NO2) and NMHC/NOx decreased by a factor of ∼4 between 1990 and 2007 due to changes in the relative emission rates of passenger cars versus diesel trucks, and slight uptick thereafter, consistent across all urban areas considered here. These pollutant ratios are expected to increase in future years due to (1) slowing rates of decrease in CO and NMHC emissions from gasoline vehicles and (2) significant advances in control of diesel NOx emissions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monóxido de Carbono/análisis , Hidrocarburos/análisis , Óxidos de Nitrógeno/análisis , Emisiones de Vehículos/análisis , Ciudades , Monitoreo del Ambiente , Los Angeles , Metano/análisis , Vehículos a Motor , Ciudad de Nueva York , Estaciones del Año , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA