Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 291(13): 6946-57, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26851283

RESUMEN

Type IV pili (T4P) are ubiquitous bacterial cell surface structures, involved in processes such as twitching motility, biofilm formation, bacteriophage infection, surface attachment, virulence, and natural transformation. T4P are assembled by machinery that can be divided into the outer membrane pore complex, the alignment complex that connects components in the inner and outer membrane, and the motor complex in the inner membrane and cytoplasm. Here, we characterize the inner membrane platform protein PilC, the cytosolic assembly ATPase PilB of the motor complex, and the cytosolic nucleotide-binding protein PilM of the alignment complex of the T4P machinery ofMyxococcus xanthus PilC was purified as a dimer and reconstituted into liposomes. PilB was isolated as a monomer and bound ATP in a non-cooperative manner, but PilB fused to Hcp1 ofPseudomonas aeruginosaformed a hexamer and bound ATP in a cooperative manner. Hexameric but not monomeric PilB bound to PilC reconstituted in liposomes, and this binding stimulated PilB ATPase activity. PilM could only be purified when it was stabilized by a fusion with a peptide corresponding to the first 16 amino acids of PilN, supporting an interaction between PilM and PilN(1-16). PilM-N(1-16) was isolated as a monomer that bound but did not hydrolyze ATP. PilM interacted directly with PilB, but only with PilC in the presence of PilB, suggesting an indirect interaction. We propose that PilB interacts with PilC and with PilM, thus establishing the connection between the alignment and the motor complex.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Proteínas Motoras Moleculares/química , Myxococcus xanthus/genética , Myxococcus xanthus/patogenicidad , Factores de Virulencia/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Adhesión Bacteriana , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Expresión Génica , Cinética , Liposomas/química , Liposomas/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Myxococcus xanthus/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Unión Proteica , Multimerización de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
PLoS Genet ; 9(9): e1003802, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068967

RESUMEN

Cells closely coordinate cell division with chromosome replication and segregation; however, the mechanisms responsible for this coordination still remain largely unknown. Here, we analyzed the spatial arrangement and temporal dynamics of the 9.1 Mb circular chromosome in the rod-shaped cells of Myxococcus xanthus. For chromosome segregation, M. xanthus uses a parABS system, which is essential, and lack of ParB results in chromosome segregation defects as well as cell divisions over nucleoids and the formation of anucleate cells. From the determination of the dynamic subcellular location of six genetic loci, we conclude that in newborn cells ori, as monitored following the ParB/parS complex, and ter regions are localized in the subpolar regions of the old and new cell pole, respectively and each separated from the nearest pole by approximately 1 µm. The bulk of the chromosome is arranged between the two subpolar regions, thus leaving the two large subpolar regions devoid of DNA. Upon replication, one ori region remains in the original subpolar region while the second copy segregates unidirectionally to the opposite subpolar region followed by the rest of the chromosome. In parallel, the ter region of the mother chromosome relocates, most likely passively, to midcell, where it is replicated. Consequently, after completion of replication and segregation, the two chromosomes show an ori-ter-ter-ori arrangement with mirror symmetry about a transverse axis at midcell. Upon completion of segregation of the ParB/parS complex, ParA localizes in large patches in the DNA-free subpolar regions. Using an Ssb-YFP fusion as a proxy for replisome localization, we observed that the two replisomes track independently of each other from a subpolar region towards ter. We conclude that M. xanthus chromosome arrangement and dynamics combine features from previously described systems with new features leading to a novel spatiotemporal arrangement pattern.


Asunto(s)
División Celular , Segregación Cromosómica/genética , Cromosomas Bacterianos/genética , Replicación del ADN/genética , Proteínas Bacterianas/genética , ADN Primasa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Sustancias Macromoleculares , Datos de Secuencia Molecular , Myxococcus xanthus/citología , Myxococcus xanthus/genética , Origen de Réplica/genética
3.
Mol Microbiol ; 87(2): 235-53, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23145985

RESUMEN

Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z-ring at the division site. Here, we show that lack of the ParA-like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome-free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z-rings and incorrect positioning of the few Z-rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z-ring formation and is a spatial regulator of Z-ring formation and cell division. The cell cycle-dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z-ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z-ring formation to this position.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , Proteínas del Citoesqueleto/metabolismo , Myxococcus xanthus/fisiología , Multimerización de Proteína , Myxococcus xanthus/citología , Myxococcus xanthus/metabolismo , Mapeo de Interacción de Proteínas
4.
Nat Commun ; 15(1): 6014, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019889

RESUMEN

Phenotypic heterogeneity in bacteria can result from stochastic processes or deterministic programs. The deterministic programs often involve the versatile second messenger c-di-GMP, and give rise to daughter cells with different c-di-GMP levels by deploying c-di-GMP metabolizing enzymes asymmetrically during cell division. By contrast, less is known about how phenotypic heterogeneity is kept to a minimum. Here, we identify a deterministic c-di-GMP-dependent program that is hardwired into the cell cycle of Myxococcus xanthus to minimize phenotypic heterogeneity and guarantee the formation of phenotypically similar daughter cells during division. Cells lacking the diguanylate cyclase DmxA have an aberrant motility behaviour. DmxA is recruited to the cell division site and its activity is switched on during cytokinesis, resulting in a transient increase in the c-di-GMP concentration. During cytokinesis, this c-di-GMP burst ensures the symmetric incorporation and allocation of structural motility proteins and motility regulators at the new cell poles of the two daughters, thereby generating phenotypically similar daughters with correct motility behaviours. Thus, our findings suggest a general c-di-GMP-dependent mechanism for minimizing phenotypic heterogeneity, and demonstrate that bacteria can ensure the formation of dissimilar or similar daughter cells by deploying c-di-GMP metabolizing enzymes to distinct subcellular locations.


Asunto(s)
Proteínas Bacterianas , GMP Cíclico , Citocinesis , Myxococcus xanthus , Fenotipo , Liasas de Fósforo-Oxígeno , Citocinesis/fisiología , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/citología , Myxococcus xanthus/fisiología , Myxococcus xanthus/genética , División Celular , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli
5.
Nat Commun ; 14(1): 3825, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380708

RESUMEN

Cell division is spatiotemporally precisely regulated, but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the PomX/PomY/PomZ proteins form a single megadalton-sized complex that directly positions and stimulates cytokinetic ring formation by the tubulin homolog FtsZ. Here, we study the structure and mechanism of this complex in vitro and in vivo. We demonstrate that PomY forms liquid-like biomolecular condensates by phase separation, while PomX self-assembles into filaments generating a single large cellular structure. The PomX structure enriches PomY, thereby guaranteeing the formation of precisely one PomY condensate per cell through surface-assisted condensation. In vitro, PomY condensates selectively enrich FtsZ and nucleate GTP-dependent FtsZ polymerization and bundle FtsZ filaments, suggesting a cell division site positioning mechanism in which the single PomY condensate enriches FtsZ to guide FtsZ-ring formation and division. This mechanism shares features with microtubule nucleation by biomolecular condensates in eukaryotes, supporting this mechanism's ancient origin.


Asunto(s)
Myxococcus xanthus , Tubulina (Proteína) , Condensados Biomoleculares , Polimerizacion , División Celular
6.
Elife ; 102021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33734087

RESUMEN

Cell division site positioning is precisely regulated but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the ~15 MDa tripartite PomX/Y/Z complex associates with and translocates across the nucleoid in a PomZ ATPase-dependent manner to directly position and stimulate formation of the cytokinetic FtsZ-ring at midcell, and then undergoes fission during division. Here, we demonstrate that PomX consists of two functionally distinct domains and has three functions. The N-terminal domain stimulates ATPase activity of the ParA/MinD ATPase PomZ. The C-terminal domain interacts with PomY and forms polymers, which serve as a scaffold for PomX/Y/Z complex formation. Moreover, the PomX/PomZ interaction is important for fission of the PomX/Y/Z complex. These observations together with previous work support that the architecturally diverse ATPase activating proteins of ParA/MinD ATPases are highly modular and use the same mechanism to activate their cognate ATPase via a short positively charged N-terminal extension.


Asunto(s)
Proteínas Bacterianas/genética , División Celular/genética , Myxococcus xanthus/fisiología , Proteínas Bacterianas/metabolismo , Myxococcus xanthus/genética
7.
Nat Microbiol ; 4(8): 1344-1355, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31110363

RESUMEN

The rod-shaped Myxococcus xanthus cells move with defined front-rear polarity using polarized motility systems. A polarity module consisting of the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB and RomR establishes this polarity. Agl-Glt gliding motility complexes assemble and disassemble at the leading and lagging pole, respectively. These processes are stimulated by MglA-GTP at the leading and MglB at the lagging pole. Here, we identify RomX as an integral component of the polarity module. RomX and RomR form a complex that has MglA guanine nucleotide exchange factor (GEF) activity and also binds MglA-GTP. In vivo RomR recruits RomX to the leading pole forming the RomR-RomX complex that stimulates MglA-GTP formation and binding, resulting in a high local concentration of MglA-GTP. The spatially separated and opposing activities of the RomR-RomX GEF at the leading and the MglB GAP at the lagging cell pole establish front-rear polarity by allowing the spatially separated assembly and disassembly of Agl-Glt motility complexes. Our findings uncover a regulatory system for bacterial cell polarity that incorporates a nucleotide exchange factor as well as an NTPase activating protein for regulation of a nucleotide-dependent molecular switch and demonstrate a spatial organization that is conserved in eukaryotes.


Asunto(s)
Proteínas Bacterianas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Myxococcus xanthus/fisiología , Polaridad Celular/fisiología , Proteínas Motoras Moleculares/metabolismo , Myxococcus xanthus/citología , Unión Proteica
8.
FEMS Microbiol Lett ; 280(2): 160-8, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18248420

RESUMEN

Phytochromes are red/far-red light photoreceptors found in plants, cyanobacteria and heterotrophic bacteria. Biochemical analyses have established that the genes bphO and bphP (PA4116 and PA4117) of Pseudomonas aeruginosa encode both phytochrome components: BphO, a heme oxygenase that produces the linear tetrapyrrole chromophore biliverdin IXalpha, and BphP, the apo-phytochrome. Reverse transcription-PCR established that both genes form a bicistronic operon. Expression of the bphOP operon was induced in the stationary phase, indicating an involvement of the P. aeruginosa quorum-sensing system and/or the stationary-phase alternative sigma factor RpoS. Bioinformatic analyses of the promoter region revealed a potential binding site for the quorum sensing regulators LasR and/or RhlR. While a direct involvement of the quorum-sensing system could be ruled out, the dependence of bphOP expression on RpoS was clearly demonstrated. Chromosomal knock-out mutants showed identical growth behavior as a wild type under various conditions but increased levels of pyocyanin were detected in the DeltabphO strain. Additionally, this strain showed decreased heat tolerance in the stationary phase, indicating a potential protective role of the BphO reaction product biliverdin. Therefore, BphO might have an additional function besides providing the chromophore for BphP and both proteins are likely to fulfill a task in the stationary phase.


Asunto(s)
Fitocromo/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulón/fisiología , Factor sigma/fisiología , Biliverdina/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/fisiología , Operón , Fitocromo/química , Fitocromo/genética , Pseudomonas aeruginosa/genética , Percepción de Quorum/genética
9.
Nat Commun ; 8(1): 1817, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29180656

RESUMEN

In bacteria, homologs of actin, tubulin, and intermediate filament proteins often act in concert with bacteria-specific scaffolding proteins to ensure the proper arrangement of cellular components. Among the bacteria-specific factors are the bactofilins, a widespread family of polymer-forming proteins whose biology is poorly investigated. Here, we study the three bactofilins BacNOP in the rod-shaped bacterium Myxococcus xanthus. We show that BacNOP co-assemble into elongated scaffolds that restrain the ParABS chromosome segregation machinery to the subpolar regions of the cell. The centromere (parS)-binding protein ParB associates with the pole-distal ends of these structures, whereas the DNA partitioning ATPase ParA binds along their entire length, using the newly identified protein PadC (MXAN_4634) as an adapter. The integrity of these complexes is critical for proper nucleoid morphology and chromosome segregation. BacNOP thus mediate a previously unknown mechanism of subcellular organization that recruits proteins to defined sites within the cytoplasm, far off the cell poles.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Segregación Cromosómica/fisiología , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , División Celular , Fenómenos Fisiológicos Celulares , Centrómero/metabolismo , Segregación Cromosómica/genética , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Myxococcus xanthus/citología , Myxococcus xanthus/crecimiento & desarrollo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN
10.
Dev Cell ; 41(3): 299-314.e13, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28486132

RESUMEN

Cell division site positioning is precisely regulated to generate correctly sized and shaped daughters. We uncover the strategy used by the social bacterium Myxococcus xanthus to position the FtsZ cytokinetic ring at midcell. PomX, PomY, and the nucleoid-binding ParA/MinD ATPase PomZ self-assemble forming a large nucleoid-associated complex that localizes at the division site before FtsZ to directly guide and stimulate division. PomXYZ localization is generated through self-organized biased random motion on the nucleoid toward midcell and constrained motion at midcell. Experiments and theory show that PomXYZ motion is produced by diffusive PomZ fluxes on the nucleoid into the complex. Flux differences scale with the intracellular asymmetry of the complex and are converted into a local PomZ concentration gradient across the complex with translocation toward the higher PomZ concentration. At midcell, fluxes equalize resulting in constrained motion. Flux-based mechanisms may represent a general paradigm for positioning of macromolecular structures in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Myxococcus xanthus/citología , Bacillus subtilis/citología , Escherichia coli/metabolismo , Myxococcus xanthus/metabolismo
11.
Cancer Res ; 69(6): 2461-70, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19276367

RESUMEN

Cetuximab, which blocks ligand binding to epidermal growth factor receptor (EGFR), is currently being studied as a novel treatment for non-small cell lung cancer (NSCLC). However, its mechanisms of action toward metastasis, and markers of drug sensitivity, have not been fully elucidated. This study was conducted to (a) determine the effect of Cetuximab on invasion and NSCLC-metastasis; (b) investigate urokinase-type plasminogen activator receptor (u-PAR), a major molecule promoting invasion and metastasis, as a target molecule; (c) delineate molecular mediators of Cetuximab-induced metastasis inhibition; and (d) identify biomarkers of drug sensitivity in NSCLC. Cetuximab treatment resulted in reduced growth and Matrigel invasion of H1395 and A549 NSCLC cell lines, in parallel with reduced u-PAR mRNA and protein. u-PAR down-regulation was brought about by suppressing the binding of JunD and c-Jun to u-PAR promoter motif -190/-171 in vivo, and an inhibition of MAP/ERK kinase signaling. Furthermore, Cetuximab inhibited NSCLC proliferation and metastasis to distant organs in vivo as indicated by the chicken embryo metastasis assay. Low E-cadherin and high u-PAR, but not EGFR, was associated with resistance to Cetuximab in seven NSCLC cell lines. Furthermore, siRNA knockdown of u-PAR led to a resensitization to Cetuximab. Moreover, low E-cadherin and high u-PAR was found in 63% of resected tumor tissues of NSCLC patients progressing under Cetuximab therapy. This is the first study to show u-PAR as a target and marker of sensitivity to Cetuximab, and to delineate novel mechanisms leading to metastasis suppression of NSCLC by Cetuximab.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Biomarcadores de Tumor/biosíntesis , Cadherinas/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Receptores del Activador de Plasminógeno Tipo Uroquinasa/biosíntesis , Animales , Anticuerpos Monoclonales Humanizados , Biomarcadores de Tumor/genética , Cadherinas/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Cetuximab , Embrión de Pollo , Factor de Crecimiento Epidérmico/antagonistas & inhibidores , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Expresión Génica , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Metástasis de la Neoplasia , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA