Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 444-457, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006313

RESUMEN

While Parkinson's disease remains clinically defined by cardinal motor symptoms resulting from nigrostriatal degeneration, it is now appreciated that the disease commonly consists of multiple pathologies, but it is unclear where these co-pathologies occur early in disease and whether they are responsible for the nigrostriatal degeneration. For the past number of years, we have been studying a well-characterized cohort of subjects with motor impairment that we have termed mild motor deficits. Motor deficits were determined on a modified and validated Unified Parkinson's Disease Rating Scale III but were insufficient in degree to diagnose Parkinson's disease. However, in our past studies, cases in this cohort had a selection bias, as both a clinical syndrome in between no motor deficits and Parkinson's disease, plus nigral Lewy pathology as defined post-mortem, were required for inclusion. Therefore, in the current study, we only based inclusion on the presence of a clinical phenotype with mild motor impairment insufficient to diagnose Parkinson's disease. Then, we divided this group further based upon whether or not subjects had a synucleinopathy in the nigrostriatal system. Here we demonstrate that loss of nigral dopaminergic neurons, loss of putamenal dopaminergic innervation and loss of the tyrosine hydroxylase-phenotype in the substantia nigra and putamen occur equally in mild motor deficit groups with and without nigral alpha-synuclein aggregates. Indeed, the common feature of these two groups is that both have similar degrees of AT8 positive phosphorylated tau, a pathology not seen in the nigrostriatal system of age-matched controls. These findings were confirmed with early (tau Ser208 phosphorylation) and late (tau Ser396/Ser404 phosphorylation) tau markers. This suggests that the initiation of nigrostriatal dopaminergic neurodegeneration occurs independently of alpha-synuclein aggregation and can be tau mediated.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Sinucleinopatías , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Trastornos Parkinsonianos/patología , Sinucleinopatías/patología , Putamen/metabolismo , Sustancia Negra/metabolismo , Dopamina
2.
Glia ; 70(1): 155-172, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533864

RESUMEN

Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia. HuR is predominantly nuclear in localization but translocates to the cytoplasm to exert a positive regulatory effect on RNA stability and translational efficiency. Homodimerization of HuR is necessary for translocation and we have developed a small molecule inhibitor, SRI-42127, that blocks this process. Here we show that SRI-42127 suppressed HuR translocation in LPS-activated glia in vitro and in vivo and significantly attenuated the production of pro-inflammatory mediators including IL1ß, IL-6, TNF-α, iNOS, CXCL1, and CCL2. Cytokines typically associated with anti-inflammatory effects including TGF-ß1, IL-10, YM1, and Arg1 were either unaffected or minimally affected. SRI-42127 suppressed microglial activation in vivo and attenuated the recruitment/chemotaxis of neutrophils and monocytes. RNA kinetic studies and luciferase studies indicated that SRI-42127 has inhibitory effects both on mRNA stability and gene promoter activation. In summary, our findings underscore HuR's critical role in promoting glial activation and the potential for SRI-42127 and other HuR inhibitors for treating neurological diseases driven by this activation.


Asunto(s)
Proteína 1 Similar a ELAV , Lipopolisacáridos , Regiones no Traducidas 3' , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Humanos , Cinética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias
3.
Brain ; 144(7): 2047-2059, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33704423

RESUMEN

α-Synuclein, a key pathological component of Parkinson's disease, has been implicated in the activation of the innate and adaptive immune system. This immune activation includes microgliosis, increased inflammatory cytokines, and the infiltration of T cells into the CNS. More recently, peripherally circulating CD4 and CD8 T cells derived from individuals with Parkinson's disease have been shown to produce Th1/Th2 cytokines in response to α-synuclein, suggesting there may be a chronic memory T cell response present in Parkinson's disease. To understand the potential effects of these α-syn associated T cell responses we used an α-synuclein overexpression mouse model, T cell-deficient mice, and a combination of immunohistochemistry and flow cytometry. In this study, we found that α-synuclein overexpression in the midbrain of mice leads to the upregulation of the major histocompatibility complex II (MHCII) protein on CNS myeloid cells as well as the infiltration of IFNγ producing CD4 and CD8 T cells into the CNS. Interestingly, genetic deletion of TCRß or CD4, as well as the use of the immunosuppressive drug fingolimod, were able to reduce the CNS myeloid MHCII response to α-synuclein. Furthermore, we observed that CD4-deficient mice were protected from the dopaminergic cell loss observed due to α-syn overexpression. These results suggest that T cell responses associated with α-synuclein pathology may be damaging to key areas of the CNS in Parkinson's disease and that targeting these T cell responses could be an avenue for disease modifying treatments.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Encefalitis/inmunología , Encefalitis/patología , Degeneración Nerviosa/inmunología , Enfermedad de Parkinson/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/inmunología
4.
Acta Neuropathol ; 141(4): 527-545, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33555429

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder where alpha-synuclein plays a central role in the death and dysfunction of neurons, both, in central, as well as in the peripheral nervous system. Besides the neuronal events observed in patients, PD also includes a significant immune component. It is suggested that the PD-associated immune response will have consequences on neuronal health, thus opening immunomodulation as a potential therapeutic strategy in PD. The immune changes during the disease occur in the brain, involving microglia, but also in the periphery with changes in cells of the innate immune system, particularly monocytes, as well as those of adaptive immunity, such as T-cells. This realization arises from multiple patient studies, but also from data in animal models of the disease, providing strong evidence for innate and adaptive immune system crosstalk in the central nervous system and periphery in PD. Here we review the data showing that alpha-synuclein plays a crucial role in the activation of the innate and adaptive immune system. We will also describe the studies suggesting that inflammation in PD includes early changes in innate and adaptive immune cells that develop dynamically through time during disease, contributing to neuronal degeneration and symptomatology in patients. This novel finding has contributed to the definition of PD as a multisystem disease that should be approached in a more integratory manner rather than a brain-focused classical approach.


Asunto(s)
Inmunidad Adaptativa/inmunología , Encéfalo/inmunología , Inmunidad Innata/inmunología , Neuroinmunomodulación/fisiología , Enfermedad de Parkinson/inmunología , Animales , Encéfalo/patología , Humanos , Enfermedad de Parkinson/patología
5.
Mov Disord ; 36(1): 37-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33009855

RESUMEN

Neuroinflammation has long been associated with central nervous system pathology in α-synucleinopathy disorders including Parkinson's disease and multiple system atrophy. In the past decade, research-focused efforts in preclinical and experimental models have rallied around this idea, and considerable effort has been made to delineate critical neuroinflammatory processes. In this article, we discuss challenges in preclinical research, notably the use of animal models to recapitulate and dissect disease phenotypes as well as the need for more sensitive, reliable radiotracers to detect on-target efficacy of immunomodulatory treatments in both human Parkinson's disease as well as preclinical models. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación , Modelos Teóricos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , alfa-Sinucleína
6.
Acta Neuropathol ; 139(5): 855-874, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31993745

RESUMEN

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by abnormal accumulation of alpha-synuclein (α-syn) in oligodendrocytes accompanied by inflammation, demyelination, and subsequent synapse and neuronal loss. Little is known about the mechanisms of neurodegeneration in MSA. However, recent work has highlighted the important role of the immune system to the pathophysiology of other synuclein-related diseases such as Parkinson's disease. In this study, we investigated postmortem brain tissue from MSA patients and control subjects for evidence of immune activation in the brain. We found a significant increase of HLA-DR+ microglia in the putamen and substantia nigra of MSA patient tissue compared to controls, as well as significant increases in CD3+, CD4+, and CD8+ T cells in these same brain regions. To model MSA in vivo, we utilized a viral vector that selectively overexpresses α-syn in oligodendrocytes (Olig001-SYN) with > 95% tropism in the dorsal striatum of mice, resulting in demyelination and neuroinflammation similar to that observed in human MSA. Oligodendrocyte transduction with this vector resulted in a robust inflammatory response, which included increased MHCII expression on central nervous system (CNS) resident microglia, and infiltration of pro-inflammatory monocytes into the CNS. We also observed robust infiltration of CD4 T cells into the CNS and antigen-experienced CD4 T cells in the draining cervical lymph nodes. Importantly, genetic deletion of TCR-ß or CD4 T cells attenuated α-syn-induced inflammation and demyelination in vivo. These results suggest that T cell priming and infiltration into the CNS are key mechanisms of disease pathogenesis in MSA, and therapeutics targeting T cells may be disease modifying.


Asunto(s)
Encéfalo/patología , Microglía/patología , Atrofia de Múltiples Sistemas/patología , Linfocitos T/patología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Microglía/inmunología , Atrofia de Múltiples Sistemas/inmunología , Neuronas/patología , Oligodendroglía/patología , Enfermedad de Parkinson/patología
7.
J Neuroinflammation ; 15(1): 244, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30165873

RESUMEN

BACKGROUND: Parkinson's disease (PD) is characterized by intracellular alpha-synuclein (α-syn) inclusions, progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and activation of the innate and adaptive immune systems. Disruption of immune signaling between the central nervous system (CNS) and periphery, such as through targeting the chemokine receptor type 2 (CCR2) or the major histocompatibility complex II (MHCII), is neuroprotective in rodent models of PD, suggesting a key role for innate and adaptive immunity in disease progression. The purpose of this study was to investigate whether genetic knockout or RNA silencing of the class II transactivator (CIITA), a transcriptional co-activator required for MHCII induction, is effective in reducing the neuroinflammation and neurodegeneration observed in an α-syn mouse model of PD. METHODS: In vitro, we utilized microglia cultures from WT or CIITA -/- mice treated with α-syn fibrils to investigate inflammatory iNOS expression and antigen processing via immunocytochemistry (ICC). In vivo, an adeno-associated virus (AAV) was used to overexpress α-syn in WT and CIITA -/- mice as a model for PD. Concurrently with AAV-mediated overexpression of α-syn, WT mice received CIITA-targeted shRNAs packaged in lentiviral constructs. Immunohistochemistry and flow cytometry were used to assess inflammation and peripheral cell infiltration at 4 weeks post transduction, and unbiased stereology was used 6 months post transduction to assess neurodegeneration. RESULTS: Using ICC and DQ-ovalbumin, we show that CIITA -/- microglial cultures failed to upregulate iNOS and MHCII expression, and had decreased antigen processing in response to α-syn fibrils when compared to WT microglia. In vivo, global knock-out of CIITA as well as local knockdown using lentiviral shRNAs targeting CIITA attenuated MHCII expression, peripheral immune cell infiltration, and α-syn-induced neurodegeneration. CONCLUSION: Our data provide evidence that CIITA is required for α-syn-induced MHCII induction and subsequent infiltration of peripheral immune cells in an α-syn mouse model of PD. Additionally, we demonstrate that CIITA in the CNS drives neuroinflammation and neurodegeneration. These data provide further support that the disruption or modulation of antigen processing and presentation via CIITA is a promising target for therapeutic development in preclinical animal models of PD.


Asunto(s)
Encefalitis , Regulación Enzimológica de la Expresión Génica/genética , Enfermedades Neurodegenerativas , Proteínas Nucleares/metabolismo , Enfermedad de Parkinson/complicaciones , Transactivadores/metabolismo , alfa-Sinucleína/metabolismo , Animales , Antígenos CD/metabolismo , Modelos Animales de Enfermedad , Encefalitis/etiología , Encefalitis/genética , Encefalitis/terapia , Femenino , Lateralidad Funcional/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Nucleares/genética , Enfermedad de Parkinson/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/genética
9.
J Neurosci ; 36(8): 2383-90, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911687

RESUMEN

Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.


Asunto(s)
Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , MicroARNs/fisiología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/biosíntesis , Animales , Animales Recién Nacidos , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Enfermedad de Parkinson/patología
10.
J Neurosci ; 36(18): 5144-59, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147665

RESUMEN

UNLABELLED: Parkinson's Disease (PD) is an age-related, chronic neurodegenerative disorder. At present, there are no disease-modifying therapies to prevent PD progression. Activated microglia and neuroinflammation are associated with the pathogenesis and progression of PD. Accumulation of α-synuclein (α-SYN) in the brain is a core feature of PD and leads to microglial activation, inflammatory cytokine/chemokine production, and ultimately to neurodegeneration. Given the importance of the JAK/STAT pathway in activating microglia and inducing cytokine/chemokine expression, we investigated the therapeutic potential of inhibiting the JAK/STAT pathway using the JAK1/2 inhibitor, AZD1480. In vitro, α-SYN exposure activated the JAK/STAT pathway in microglia and macrophages, and treatment with AZD1480 inhibited α-SYN-induced major histocompatibility complex Class II and inflammatory gene expression in microglia and macrophages by reducing STAT1 and STAT3 activation. For in vivo studies, we used a rat model of PD induced by viral overexpression of α-SYN. AZD1480 treatment inhibited α-SYN-induced neuroinflammation by suppressing microglial activation, macrophage and CD4(+) T-cell infiltration and production of proinflammatory cytokines/chemokines. Numerous genes involved in cell-cell signaling, nervous system development and function, inflammatory diseases/processes, and neurological diseases are enhanced in the substantia nigra of rats with α-SYN overexpression, and inhibited upon treatment with AZD1480. Importantly, inhibition of the JAK/STAT pathway prevented the degeneration of dopaminergic neurons in vivo These results indicate that inhibiting the JAK/STAT pathway can prevent neuroinflammation and neurodegeneration by suppressing activation of innate and adaptive immune responses to α-SYN. Furthermore, this suggests the feasibility of targeting the JAK/STAT pathway as a neuroprotective therapy for neurodegenerative diseases. SIGNIFICANCE STATEMENT: α-SYN plays a central role in the pathophysiology of PD through initiation of neuroinflammatory responses. Using an α-SYN overexpression PD model, we demonstrate a beneficial therapeutic effect of AZD1480, a specific inhibitor of JAK1/2, in suppressing neuroinflammation and neurodegeneration. Our findings document that inhibition of the JAK/STAT pathway influences both innate and adaptive immune responses by suppressing α-SYN-induced microglia and macrophage activation and CD4(+) T-cell recruitment into the CNS, ultimately suppressing neurodegeneration. These findings are the first documentation that suppression of the JAK/STAT pathway disrupts the circuitry of neuroinflammation and neurodegeneration, thus attenuating PD pathogenesis. JAK inhibitors may be a viable therapeutic option for the treatment of PD patients.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Inflamación/prevención & control , Quinasas Janus/antagonistas & inhibidores , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Factores de Transcripción STAT/antagonistas & inhibidores , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/toxicidad , Animales , Inflamación/inducido químicamente , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley
11.
J Neurochem ; 139 Suppl 1: 131-155, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27018978

RESUMEN

Animal models of Parkinson's disease (PD) are important for understanding the mechanisms of the disease and can contribute to developing and validating novel therapeutics. Ideally, these models should replicate the cardinal features of PD, such as progressive neurodegeneration of catecholaminergic neurons and motor defects. Many current PD models emphasize pathological forms of α-synuclein, based on findings that autosomal dominant mutations in α-synuclein and duplications/triplications of the SNCA gene cause PD. In addition, Lewy bodies and Lewy neurites, primarily composed of α-synuclein, represent the predominant pathological characteristics of PD. These inclusions have defined features, such as insolubility in non-ionic detergent, hyperphosphorylation, proteinase K sensitivity, a filamentous appearance by electron microscopy, and ß-sheet structure. Furthermore, it has become clear that Lewy bodies and Lewy neurites are found throughout the peripheral and central nervous system, and could account not only for motor symptoms, but also for non-motor symptoms of the disease. The goal of this review is to describe two new α-synuclein-based models: the recombinant adeno-associated viral vector-α-synuclein model and the α-synuclein fibril model. An advantage of both models is that they do not require extensive crossbreeding of rodents transgenic for α-synuclein with other rodents transgenic for genes of interest to study the impact of such genes on PD-related pathology and phenotypes. In addition, abnormal α-synuclein can be expressed in brain regions relevant for disease. Here, we discuss the features of each model, how each model has contributed thus far to our understanding of PD, and the advantages and potential caveats of each model. This review describes two α-synuclein-based rodent models of Parkinson's disease: the rAAV-α-synuclein model and the α-synuclein fibril model. The key features of these models are described, and the extent to which they recapitulate features of PD, such as α-synuclein inclusion formation, loss of dopaminergic synapses in the striatum, motor defects, inflammation, and dopamine neuron death. This article is part of a special issue on Parkinson disease.


Asunto(s)
Amiloide/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Amiloide/metabolismo , Animales , Comprensión , Vectores Genéticos/administración & dosificación , Humanos , Enfermedad de Parkinson/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , alfa-Sinucleína/metabolismo
12.
J Neurosci ; 33(23): 9592-600, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23739956

RESUMEN

Accumulation of α-synuclein (α-syn) in the brain is a core feature of Parkinson disease (PD) and leads to microglial activation, production of inflammatory cytokines and chemokines, T-cell infiltration, and neurodegeneration. Here, we have used both an in vivo mouse model induced by viral overexpression of α-syn as well as in vitro systems to study the role of the MHCII complex in α-syn-induced neuroinflammation and neurodegeneration. We find that in vivo, expression of full-length human α-syn causes striking induction of MHCII expression by microglia, while knock-out of MHCII prevents α-syn-induced microglial activation, antigen presentation, IgG deposition, and the degeneration of dopaminergic neurons. In vitro, treatment of microglia with aggregated α-syn leads to activation of antigen processing and presentation of antigen sufficient to drive CD4 T-cell proliferation and to trigger cytokine release. These results indicate a central role for microglial MHCII in the activation of both the innate and adaptive immune responses to α-syn in PD and suggest that the MHCII signaling complex may be a target of neuroprotective therapies for the disease.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Neuronas Dopaminérgicas/metabolismo , Genes MHC Clase II/fisiología , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , alfa-Sinucleína/biosíntesis , Animales , Animales Recién Nacidos , Proliferación Celular , Células Cultivadas , Neuronas Dopaminérgicas/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
13.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895456

RESUMEN

Multiple system atrophy (MSA) is rare, fast progressing, and fatal synucleinopathy with alpha-synuclein (α-syn) inclusions located within oligodendroglia called glial cytoplasmic inclusions (GCI). Along with GCI pathology there is severe demyelination, neurodegeneration, and neuroinflammation. In post-mortem tissue, there is significant infiltration of CD8+ T cells into the brain parenchyma, however their role in disease progression is unknown. To determine the role of CD8+ T cells, a modified AAV, Olig001-SYN, was used to selectively overexpress α-syn in oligodendrocytes modeling MSA in mice. Four weeks post transduction, we observed significant CD8+ T cell infiltration into the striatum of Olig001-SYN transduced mice recapitulating the CD8+ T cell infiltration observed in post-mortem tissue. To understand the role of CD8+ T cells, a CD8 knockout mice were transduced with Olig001-SYN. Six months post transduction into a mouse lacking CD8+ T cells, demyelination and neurodegeneration were unchanged. Four weeks post transduction, neuroinflammation and demyelination were enhanced in CD8 knockout mice compared to wild type controls. Applying unbiased spectral flow cytometry, CD103+, CD69+, CD44+, CXCR6+, CD8+ T cells were identified when α-syn was present in oligodendrocytes, suggesting the presence of tissue resident memory CD8+ T (Trm) cells during MSA disease progression. This study indicates that CD8+ T cells are not critical in driving MSA pathology but are needed to modulate the neuroinflammation and demyelination response.

14.
Acta Neuropathol Commun ; 12(1): 11, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238869

RESUMEN

Multiple system atrophy (MSA) is a rare and fatal synucleinopathy characterized by insoluble alpha-synuclein (α-syn) cytoplasmic inclusions located within oligodendroglia. Neuroinflammation, demyelination, and neurodegeneration are correlated with areas of glia cytoplasmic inclusions (GCI) pathology, however it is not known what specifically drives disease pathogenesis. Recent studies have shown that disease pathologies found in post-mortem tissue from MSA patients can be modeled in rodents via a modified AAV overexpressing α-syn, Olig001-SYN, which has a 95% tropism for oligodendrocytes. In the Olig001-SYN mouse model, CD4+ T cells have been shown to drive neuroinflammation and demyelination, however the mechanism by which this occurs remains unclear. In this study we use genetic and pharmacological approaches in the Olig001-SYN model of MSA to show that the pro-inflammatory cytokine interferon gamma (IFNγ) drives neuroinflammation, demyelination, and neurodegeneration. Furthermore, using an IFNγ reporter mouse, we found that infiltrating CD4+ T cells were the primary producers of IFNγ in response to α-syn overexpression in oligodendrocytes. Results from these studies indicate that IFNγ expression from CD4+ T cells drives α-syn-mediated neuroinflammation, demyelination, and neurodegeneration. These results indicate that targeting IFNγ expression may be a potential disease modifying therapeutic strategy for MSA.


Asunto(s)
Enfermedades Desmielinizantes , Atrofia de Múltiples Sistemas , Sinucleinopatías , Animales , Humanos , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Atrofia de Múltiples Sistemas/patología , Enfermedades Neuroinflamatorias , Oligodendroglía/patología , Sinucleinopatías/patología
16.
Sci Transl Med ; 15(721): eadk3225, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37939158

RESUMEN

Parkinson's disease (PD) is a multisystem disorder with characteristics of a chronic inflammatory disease. To develop effective immunomodulatory interventions to combat PD, we need to think innovatively about the implications of orchestrated central and peripheral innate and adaptive immune responses that occur as the disease begins and progresses.


Asunto(s)
Enfermedad de Parkinson , Humanos , Inmunidad Adaptativa , Inmunomodulación , Inmunidad Innata
17.
Handb Clin Neurol ; 193: 95-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803825

RESUMEN

Neuroinflammation is a core feature of Parkinson disease (PD) and related disorders. Inflammation is detectable early in PD and persists throughout the disease state. Both the innate and the adaptive arms of the immune system are engaged in both human PD as well as in animal models of the disease. The upstream causes of PD are likely multiple and complex, which makes targeting of disease-modifying therapies based on etiological factors difficult. Inflammation is a broadly shared common mechanism and likely makes an important contribution to progression in most patients with manifest symptoms. Development of treatments targeting neuroinflammation in PD will require an understanding of the specific immune mechanisms which are active, their relative effects on both injury and neurorestoration, as well as the role of key variables likely to modulate the immune response: age, sex, the nature of the proteinopathies present, and the presence of copathologies. Studies characterizing the specific state of immune response in individuals and groups of people affected by PD will be essential to the development of targeted disease-modifying immunotherapies.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Enfermedades Neuroinflamatorias , Inflamación , Sistema Inmunológico , Modelos Animales
18.
Glia ; 60(2): 189-202, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21989628

RESUMEN

The exact biological role of the cytokine tumor necrosis factor (TNF) in the central nervous system (CNS) is not well understood; but overproduction of TNF by activated microglia has been implicated in neuronal death, suggesting that TNF inhibition in the CNS may be a viable neuroprotective strategy. We investigated the role of TNF signaling in regulation of microglia effector functions using molecular, cellular, and functional analyses of postnatal and adult microglia populations in the CNS. No differences were found by flow cytometric analyses in the basal activation state between TNF-null and wild-type mice. Although TNF-null microglia displayed an atypical morphology with cytoplasmic vacuoles in response to stimulation with lipopolysaccharide (LPS), the phagocytic response of TNF-null microglia to Escherichia coli particles in vitro was normal and there were no signs of enhanced caspase 3 activation or apoptosis. Functionally, conditioned media from LPS-stimulated TNF-null microglia was found to have significantly reduced levels of IL-10, IL-6, IL-1ß, IL-12, and CXCL1 relative to wild-type microglia and exerted no cytotoxic effects on neurally differentiated dopaminergic (DA) MN9D cells. In contrast, incubation of wild-type microglia with TNF inhibitors selectively depleted the levels of soluble TNF and its cytotoxicity on MN9D cells. To distinguish whether reduced cytotoxicity by LPS-activated TNF-null microglia could be attributed to deficient autocrine TNF signaling, we employed primary microglia deficient in one or both TNF receptors (TNFR1 and TNFR2) in co-culture with MN9D cells and found that neither receptor is required to elicit LPS-evoked TNF production and cytotoxicity on DA cells.


Asunto(s)
Microglía/patología , Degeneración Nerviosa/patología , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Animales Recién Nacidos , Línea Celular Tumoral , Técnicas de Cocultivo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Cultivo Primario de Células , Factor de Necrosis Tumoral alfa/deficiencia , Factor de Necrosis Tumoral alfa/fisiología
19.
J Neuroinflammation ; 9: 259, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23186369

RESUMEN

BACKGROUND: The protein alpha-synuclein (α-SYN), which is found in the Lewy bodies of dopamine-producing (DA) neurons in the substantia nigra (SN), has an important role in the pathogenesis of Parkinson's disease (PD). Previous studies have shown that neuroinflammation plays a key role in PD pathogenesis. In an AAV-synuclein mouse model of PD, we have found that over-abundance of α-SYN triggers the expression of NF-κB p65, and leads to microglial activation and DA neurodegeneration. We also have observed that Fcγ receptors (FcγR), proteins present on the surface of microglia that bind immunoglobulin G (IgG) and other ligands, are key modulators of α-SYN-induced neurodegeneration. METHODS: In order to study the role of FcγRs in the interactions of α-SYN and microglia, we treated the primary microglial cultures from wild-type (WT) and FcγR-/- mice with aggregated human α-SYN in vitro. RESULTS: Using immunocytochemistry, we found that α-SYN was taken up by both WT and FcγR-/- microglia, however, their patterns of internalization were different, with aggregation in autophagosomes in WT cells and more diffuse localization in FcγR-/- microglia. In WT microglia, α-SYN induced the nuclear accumulation of NF-κB p65 protein and downstream chemokine expression while in FcγR-/- mouse microglia, α-SYN failed to trigger the enhancement of nuclear NF-κB p65, and the pro-inflammatory signaling was reduced. CONCLUSIONS: Our results suggest that α-SYN can interact directly with microglia and can be internalized and trafficked to autophagosomes. FcγRs mediate this interaction, and in the absence of the gamma chain, there is altered intracellular trafficking and attenuation of pro-inflammatory NF-κB signaling. Therefore, blocking either FcγR signaling or downstream NF-κB activation may be viable therapeutic strategies in PD.


Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Microglía/efectos de los fármacos , Receptores de IgG/metabolismo , Transducción de Señal/efectos de los fármacos , alfa-Sinucleína/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/citología , Células Cultivadas , Citocinas/genética , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica/genética , Humanos , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Biosíntesis de Proteínas/genética , Receptores de IgG/deficiencia , Factores de Tiempo , alfa-Sinucleína/metabolismo
20.
Mol Ther ; 19(1): 46-52, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20959812

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder typified by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Recent evidence indicates that neuroinflammation may play a critical role in the pathogenesis of PD, particularly tumor necrosis factor (TNF). We have previously shown that soluble TNF (solTNF) is required to mediate robust degeneration induced by 6-hydroxydopamine (6-OHDA) or lipopolysaccharide. What remains unknown is whether TNF inhibition can attenuate the delayed and progressive phase of neurodegeneration. To test this, rats were injected in the SNpc with lentivirus encoding dominant-negative TNF (lenti-DN-TNF) 2 weeks after receiving a 6-OHDA lesion. Remarkably, when examined 5 weeks after the initial 6-OHDA lesion, no further loss of nigral DA neurons was observed. Lenti-DN-TNF also attenuated microglial activation. Together, these data suggest that TNF is likely a critical mediator of nigral DA neuron death during the delayed and progressive phase of neurodegeneration, and that microglia may be the principal cell type involved. These promising findings provide compelling reasons to perform DN-TNF gene transfer studies in nonhuman primates with the long-term goal of using it in the clinic to prevent the delayed and progressive degeneration of DA neurons that gives rise to motor symptoms in PD.


Asunto(s)
Dopamina/metabolismo , Terapia Genética/métodos , Neuronas/patología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Sustancia Negra/patología , Factor de Necrosis Tumoral alfa/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Muerte Celular/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Oxidopamina , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA